
Federated Learning
From Theory to Practice

Alexander Jung

August 1, 2025

please cite as: A. Jung, Federated Learning: From Theory to
Practice. Espoo, Finland: Aalto University, 2025.

1

https://FederatedLearningAalto.github.io

Preface

This book offers a hands-on introduction to building and understanding

federated learning (FL) systems. FL enables multiple devices – such as

smartphones, sensors, or local computers – to collaboratively train machine

learning (ML) models, while keeping their data private and local. It is a

powerful solution when data cannot or should not be centralized due to

privacy, regulatory, or technical reasons.

The book is designed for students, engineers, and researchers who want

to learn how to design scalable, privacy-preserving FL systems. Our main

focus is on personalization: enabling each device to train its own model while

still benefiting from collaboration with relevant devices. This is achieved by

leveraging similarities between the learning tasks associated with devices. We

represent these similarities as weighted edges of a federated learning network

(FL network).

The key idea is to represent real-world FL systems as networks of devices,

where nodes correspond to device and edges represent communication links and

data similarities between them. The training of personalized models for these

devices can be naturally framed as a distributed optimization problem. This

optimization problem is referred to as generalized total variation minimization

(GTVMin) and ensures that devices with similar learning tasks learn similar

model parameters.

Our approach is both mathematically principled and practically motivated.

While we introduce some advanced ideas from optimization theory and graph-

based learning, we aim to keep the book accessible. Readers are guided

through the core ideas step-by-step, with intuitive explanations. Throughout,

2

we maintain a focus of building FL systems that are trustworthy—robust

against attacks, privacy-friendly, and secure.

Audience. We assume a basic background in undergraduate-level mathemat-

ics, including calculus and linear algebra. Familiarity with concepts such as

convergence, derivatives, and norms will be helpful but not strictly necessary.

No prior experience with ML or optimization is required, as we build up most

concepts from first principles.

The book is intended for advanced undergraduates, graduate students, and

practitioners who are looking for a practical, principled, and privacy-friendly

approach to decentralized ML.

Structure. The book begins by introducing the key motivations and chal-

lenges of FL. We then move on to introduce the notion of an FL network

and explain how they capture the structure of distributed ML applications.

The core chapters develop the GTVMin formulation and explore how to solve

it using various distributed optimization techniques. Later chapters focus

on practical concerns such as robustness and privacy protection of GTVMin-

based systems. A comprehensive glossary is also included to better support

the reader.

Acknowledgements. The development of this book has greatly benefited

from feedback and insights gathered during the course CS-E4740 Federated

Learning at Aalto University, taught between 2023 and 2025. I am grateful

to Bo Zheng, Olga Kuznetsova, Diana Pfau, and Shamsiiat Abdurakhmanova

for their thoughtful comments on early drafts. Special thanks go to Ekkehard

Schnoor and Mikko Seesto for their careful proofreading of the manuscript

and to Konstantina Olioumtsevits for her meticulous revision of the glossary.

3

Some of the figures in the glossary have been prepared with the help of

Salvatore Rastelli and Juliette Gronier.

This work was supported by:

• the Research Council of Finland (grants 331197, 363624, 349966),

• the European Union (grant 952410),

• the Jane and Aatos Erkko Foundation (grant A835), and

• Business Finland, as part of the project Forward-Looking AI Governance

in Banking and Insurance (FLAIG).

4

Contents

1 Introduction to Federated Learning 1

1.1 Core Techniques in Federated Learning 3

1.2 Book Structure and Roadmap 4

1.3 Exercises . 6

2 Machine Learning Foundations for FL 8

2.1 Components of ML Systems: A Design Framework 8

2.2 Computational Aspects of empirical risk minimization (ERM) 13

2.3 Statistical Aspects of ERM . 14

2.4 Validation and Diagnosis of ML 19

2.5 Regularization . 23

2.6 From ML to FL via Regularization 27

2.7 Exercises . 29

3 A Design Principle for FL 31

3.1 FL Networks . 31

3.2 Generalized Total Variation 35

3.3 Generalized Total Variation Minimization 42

3.3.1 Computational Aspects of GTVMin 45

3.3.2 Statistical Aspects of GTVMin 48

3.4 Non-Parametric Models in FL Networks 51

3.5 Interpretations . 52

3.6 Exercises . 56

3.7 Proofs . 63

3.7.1 Proof of Proposition 3.1 63

5

4 Gradient Methods for Federated Optimization 64

4.1 Gradient Descent . 65

4.2 How to Choose the Learning Rate 68

4.3 When to Stop? . 70

4.4 Perturbed Gradient Step . 74

4.5 Handling Constraints - Projected Gradient Descent 75

4.6 Extended Gradient Methods for Federated Optimization . . . 78

4.7 Gradient Methods as Fixed-Point Iterations 81

4.8 Exercises . 85

5 FL Algorithms 88

5.1 Gradient Descent for GTVMin 89

5.2 Message Passing Implementation 92

5.3 FedSGD . 98

5.4 FedAvg . 101

5.5 FedProx . 107

5.6 FedRelax . 109

5.7 A Unified Formulation . 113

5.8 Asynchronous FL Algorithms 115

5.9 Exercises . 122

5.10 Proofs . 125

5.10.1 Proof of Proposition 5.1 125

5.10.2 Proof of Proposition 5.2 126

6 Key Variants of Federated Learning 129

6.1 Single-Model FL . 130

6

6.2 Clustered FL . 132

6.3 Horizontal FL . 136

6.4 Vertical FL . 138

6.5 Personalized Federated Learning 139

6.6 Few-Shot Learning . 143

6.7 Exercises . 144

6.8 Proofs . 145

6.8.1 Proof of Proposition 6.1 145

7 Graph Learning for FL Networks 147

7.1 Edges as Design Choice . 148

7.2 Measuring (Dis-)Similarity Between Datasets 154

7.3 Graph Learning Methods . 157

7.4 Exercises . 160

8 Trustworthy FL 161

8.1 Human Agency and Oversight 162

8.2 Technical Robustness and Safety 163

8.2.1 Sensitivity Analysis . 164

8.2.2 Estimation Error Analysis 166

8.2.3 Robustness of FL Algorithms 169

8.2.4 Network Resilience . 175

8.3 Privacy and Data Governance 176

8.4 Transparency . 177

8.5 Diversity, Non-Discrimination and Fairness 182

8.6 Societal and Environmental Well-Being 183

7

8.7 Exercises . 185

9 Privacy Protection in FL 186

9.1 Measuring Privacy Leakage 186

9.2 Ensuring Differential Privacy 194

9.3 Private Feature Learning . 197

9.4 Exercises . 201

10 Cybersecurity in FL: Attacks and Defenses 205

10.1 A Simple Attack Model . 206

10.1.1 Model Poisoning . 208

10.1.2 Data Poisoning . 208

10.2 Attack Types . 210

10.3 Making FL Robust Against Attacks 212

10.4 Exercises . 216

8

Lists of Symbols

Sets and Functions

a ∈ A The object a is an element of the set A.

a := b

Depending on the context, we use the symbol := either to

mean a definition or to mean an assignment (e.g., within

a pseudocode for an algorithm.

A ⊆ B A is a subset of B.

A ⊂ B A is a strict subset of B.

N The natural numbers 1, 2,

R The real numbers x [1].

R+ The non-negative real numbers x ≥ 0.

R++ The positive real numbers x > 0.

|x| The absolute value of a real number x ∈ R.

9

{0, 1} The set consisting of the two real numbers 0 and 1.

[0, 1] The closed interval of real numbers x with 0 ≤ x ≤ 1.

argmin
w

f(w) The set of minimizers for a real-valued function f(w).

S(n) The set of unit-norm vectors in Rn+1.

log a The logarithm of the positive number a ∈ R++.

h(·) :A→B : a 7→h(a)

A function (map) that accepts any element a ∈ A from a

set A as input and delivers a well-defined element h(a) ∈ B

of a set B. The set A is the domain of the function h and

the set B is the co-domain of h. ML aims at finding (or

learning) a function h (i.e., a hypothesis) that reads in the

features x of a data point and delivers a prediction h(x)

for its label y.

∇f(w)

The gradient of a differentiable real-valued function f :

Rd → R is the vector ∇f(w) =
(

∂f
∂w1

, . . . , ∂f
∂wd

)T ∈ Rd [2,

Ch. 9].

10

Matrices and Vectors

a =
(
a1, . . . , ad)

T A vector of length d, with its j-th entry being aj.

Rd The set of vectors a =
(
a1, . . . , ad

)T consisting of d real-

valued entries a1, . . . , ad ∈ R.

Id, I
A square identity matrix of size d× d. If the size is clear

from context, we drop the subscript.

∥a∥2
The Euclidean (or ℓ2) norm of the vector a =(
a1, . . . , ad

)T ∈ Rd defined as ∥a∥2 :=
√∑d

j=1 a
2
j .

∥a∥
Some norm of the vector a ∈ Rd [3]. Unless specified

otherwise, we mean the Euclidean norm ∥a∥2.

aT
The transpose of a matrix that has the vector a ∈ Rd as

its single column.

AT
The transpose of a matrix A ∈ Rm×d. A square real-valued

matrix A ∈ Rm×m is called symmetric if A = AT .

0 =
(
0, . . . , 0

)T
The vector in Rd with each entry equal to zero.

1 =
(
1, . . . , 1

)T
The vector in Rd with each entry equal to one.

λj

(
Q
) The j-th eigenvalue (sorted in either ascending or descend-

ing order) of a positive semi-definite (psd) matrix Q. We

also use the shorthand λj if the corresponding matrix is

clear from context.

11

(
vT ,wT

)T The vector of length d+ d′ obtained by concatenating the

entries of vector v ∈ Rd with the entries of w ∈ Rd′ .

span{B}

The span of a matrix B ∈ Ra×b, which is the subspace of

all linear combinations of the columns of B, span{B} ={
Ba : a ∈ Rb

}
⊆ Ra.

A⊗B The Kronecker product of A and B [4].

12

Probability Theory

Ep{f(z)}

The expectation of a function f(z) of a random variable

(RV) z whose probability distribution is P(z). If the prob-

ability distribution is clear from context, we just write

E{f(z)}.

P(x;w)

A parametrized probability distribution of an RV x. The

probability distribution depends on a parameter vector

w. For example, P(x;w) could be a multivariate normal

distribution with the parameter vector w given by the

entries of the mean vector E{x} and the covariance matrix

E
{(

x− E{x}
)(
x− E{x}

)T}.

N (µ, σ2)

The probability distribution of a Gaussian random variable

(Gaussian RV) x ∈ R with mean (or expectation) µ =

E{x} and variance σ2 = E
{
(x− µ)2

}
.

N (µ,C)

The multivariate normal distribution of a vector-valued

Gaussian RV x ∈ Rd with mean (or expectation) µ =

E{x} and covariance matrix C = E
{(

x− µ
)(
x− µ

)T}.

13

Machine Learning

r An index r = 1, 2, . . . that enumerates data points.

m The number of data points in (i.e., the size of) a dataset.

D
A dataset D = {z(1), . . . , z(m)} is a list of individual data

points z(r), for r = 1, . . . ,m.

d The number of features that characterize a data point.

xj

The j-th feature of a data point. The first feature is

denoted x1, the second feature x2, and so on.

x
The feature vector x =

(
x1, . . . , xd

)T of a data point whose

entries are the individual features of a data point.

X
The feature space X is the set of all possible values that

the features x of a data point can take on.

B A mini-batch (or subset) of randomly chosen data points.

B
The size of (i.e., the number of data points in) a mini-

batch.

y The label (or quantity of interest) of a data point.

y(r) The label of the r-th data point.

x(r) The feature vector of the r-th data point within a dataset.

14

(
x(r), y(r)

)
The features and label of the r-th data point.

Y

The label space Y of an ML method consists of all potential

label values that a data point can carry. The nominal

label space might be larger than the set of different label

values arising in a given dataset (e.g., a training set). ML

problems (or methods) using a numeric label space, such as

Y = R or Y = R3, are referred to as regression problems (or

methods). ML problems (or methods) that use a discrete

label space, such as Y = {0, 1} or Y = {cat , dog ,mouse},

are referred to as classification problems (or methods).

η
Learning rate (or step size) used by gradient-based meth-

ods.

h(·)
A hypothesis map that reads in features x of a data point

and delivers a prediction ŷ = h(x) for its label y.

H

A hypothesis space or model used by an ML method.

The hypothesis space consists of different hypothesis maps

h : X → Y , between which the ML method must choose.

deff (H) The effective dimension of a hypothesis space H.

L ((x, y), h)

The loss incurred by predicting the label y of a data point

using the prediction ŷ = h(x). The prediction ŷ is obtained

by evaluating the hypothesis h ∈ H for the feature vector

x of the data point.

15

R
{
h
} A regularizer that assigns a hypothesis h a measure for

the anticipated increase in average loss when h is applied

to data points outside the training set.

Ev

The validation error of a hypothesis h, which is its average

loss incurred over a validation set.

L̂
(
h|D

) The empirical risk or average loss incurred by the hypoth-

esis h on a dataset D.

Et

The training error of a hypothesis h, which is its average

loss incurred over a training set.

t
A discrete-time index t = 0, 1, . . . used to enumerate se-

quential events (or time instants).

α
A regularization parameter that controls the amount of

regularization.

w

A parameter vector w =
(
w1, . . . , wd

)T of a model, e.g.,

the weights of a linear model or in an artificial neural

network (ANN).

h(w)(·)
A hypothesis map that involves tunable model parameters

w1, . . . , wd stacked into the vector w =
(
w1, . . . , wd

)T .

Φ(·) A feature map Φ : X → X ′ : x 7→ x′ := ϕ
(
x
)
∈ X ′.

16

X

The feature matrix X =
(
x(1), . . . ,x(m)

)T ∈ Rm×d of a

dataset, consisting of m data points each characterized by

a feature vector x(r), for r = 1, . . . ,m.

y

The label vector y =
(
y(1), . . . , y(m)

)T ∈ Rm of a dataset,

consisting of m data points each characterized by a label

y(r), for r = 1, . . . ,m.

17

Federated Learning

G = (V , E)

An undirected graph whose nodes i ∈ V represent devices

within an FL network. The undirected edges {i, i′} ∈

E , each having a positive weight Ai,i′ , represent either

some form of connectivity between devices or statistical

similarities between their local datasets.

i ∈ V

A node that represents some device within an FL network.

The device can access a local dataset and train a local

model.

C

Given a graph we denote by C ⊆ V a subset (or cluster)

of nodes which are connected by many edges with large

weights.

|∂C| The boundary of a cluster, which is the sum
∑

i∈C,i′ /∈C Ai,i′ .

G(C) The induced subgraph of G using the nodes in C ⊆ V .

L(G) The Laplacian matrix of a graph G.

L(C) The Laplacian matrix of the induced graph G(C).

N (i) The neighborhood of a node i in a graph G.

d(i)
The weighted degree d(i) :=

∑
i′∈N (i) Ai,i′ of a node i in a

graph G.

d(G)max The maximum weighted node degree of a graph G.

18

D(i) The local dataset D(i) carried by node i ∈ V of an FL

network.

mi

The number of data points (i.e., sample size) contained in

the local dataset D(i) at node i ∈ V .

x(i,r)
The features of the r-th data point in the local dataset

D(i).

y(i,r) The label of the r-th data point in the local dataset D(i).

w(i)
The local model parameters of device i within an FL

network.

Li (w)
The local loss function used by device i to measure the

usefulness of some choice w for the local model parameters.

R(i)
{
h
} A regularizer used for model training by device i within

a FL network. This regularizer typically depends on the

model parameters of other devices i′ ∈ V \ {i}.

d(i,i
′)

A quantitative measure for the variation (or discrepancy)

between trained local models at nodes i, i′.

stack
{
w(i)

}n

i=1

The vector
((

w(1)
)T

, . . . ,
(
w(n)

)T)T

∈ Rdn that is ob-

tained by vertically stacking the local model parameters

w(i) ∈ Rd.

19

1 Introduction to Federated Learning

We are surrounded by devices, such as smartphones and wearables, that gener-

ate decentralized collections of local datasets [5–9]. These local datasets often

exhibit an intrinsic network structure, arising from functional dependencies

or statistical similarities (see Chapter 7.3).

For example, contact networks underpin pandemic modeling, network

medicine maps disease relationships via co-morbidities [10], and social sciences

leverage social graphs to relate the data of connected individuals [11]. Similarly,

weather stations of the Finnish Meteorological Institute (FMI) produce local

datasets with statistical properties influenced by geographic proximity.

Federated learning (FL) is an umbrella term for distributed optimization

methods that train machine learning (ML) models directly at the locations

of data generation [12–16]. Unlike traditional ML workflows that centralize

data before training, FL leverages in-situ computations. Figure 1.1 contrasts

these approaches.

From an engineering perspective, this book is about building federated

learning systems by formulating them as network-based optimization problems.

The core idea is to represent a real-world FL setup via an federated learning

network (FL network), where nodes correspond to devices with local datasets

and models, and edges reflect communication capabilities or statistical simi-

larity. We then pose FL as an optimization problem over this FL network,

which we call generalized total variation minimization (GTVMin). GTVMin

balances local model performance with smoothness of model parameters across

connected nodes.

Different choices for how to measure model variation across the FL network

1

Fig. 1.1. Left: A basic ML method uses a single dataset to train a single

model. Right: Decentralized collection of devices with the ability to access

data and train models locally.

lead to different flavors of FL methods. The overarching goal is to derive these

methods in a principled way by applying distributed optimization methods.

All FL algorithms we study can be seen as fixed-point iterations for solving

an instance of GTVMin.

Beyond methodology, FL is also driven by several practical motivations:

• Privacy. By exchanging only updates to model parameters, FL avoids

raw data transmission and thus mitigates privacy risks (see Chapter 9).

• Robustness. FL systems can tolerate stragglers and are more resilient

to cyber-attacks, such as data poisoning (see Chapter 10).

• Parallelism. We can interpret the interconnected devices of a FL

network as a parallel computer. One example of such a parallel computer

is a mobile network constituted by smartphones that can communicate

2

via radio links. This parallel computer allows to speed up computations

required for the training of ML models (see Chapter 4).

• Democratization. FL enables collective learning using low-cost, widely

available devices – rather than relying on centralized high-end hardware

[17,18].

• Communication Efficiency. In remote or bandwidth-limited scenar-

ios, training locally can be cheaper than transmitting raw datasets [19].

• Personalization. FL naturally supports training personalized models

that adapt to device-specific data distributions (see Chapter 6).

1.1 Core Techniques in Federated Learning

To build and analyze FL algorithms, this book draws on core mathematical

concepts:

Euclidean space. Our main mathematical structure for the study and

design of FL systems is the Euclidean space Rd. We expect familiarity

with the algebraic and geometric structure of Rd [20, 21]. For example, we

often use the spectral decomposition of positive semi-definite (psd) matrices

that naturally arise in the formulation of FL applications. We will also

use the geometric structure of Rd, which is defined by the inner-product

wTw′ :=
∑d

j=1 wjw
′
j between two vectors w,w′ ∈ Rd and the induced norm

∥w∥2 :=
√
wTw =

√∑d
j=1w

2
j .

Calculus. A main toolbox for the design the FL algorithms are variants

of gradient descent (GD). The common idea of gradient-based methods is to

approximate a function f(w) locally by a linear function. This local linear

3

approximation is determined by the gradient ∇f(w). We, therefore, expect

some familiarity with multivariable calculus [2].

Fixed-Point Iterations. Each algorithm that we discuss in this book

can be interpreted as a fixed-point iteration of some operator P : Rd → Rd.

These operators depend on the local datasets and personal models used within

an FL system. A prime example of such an operator is the gradient step

of gradient-based methods (see Chapter 4). The computational properties

of these FL algorithms are determined by the contraction properties of the

underlying operator [22].

1.2 Book Structure and Roadmap

This book is organized into three parts:

• Part I: ML Refresher. Chapters 2 and 4 review basic ML concepts and

optimization methods. These chapters serve both to refresh prerequisite

knowledge and to highlight techniques like regularization and gradient

descent that underpin FL.

• Part II: FL Theory and Methods. Chapter 3 introduces the FL

network and formulates the core optimization principle, i.e., GTVMin.

Chapters 4 and 5 show how to apply optimization methods to derive

scalable and personalized FL algorithms. Chapter 6 explores main FL

variants as special cases of GTVMin, and Chapter 7 discusses methods

for constructing meaningful edge structures in FL networks.

• Part III: trustworthy artificial intelligence (trustworthy AI).

Chapters 8–10 explore key requirements for trustworthy AI systems,

4

including privacy protection and robustness against data poisoning.

These chapters link FL methodology to emerging ethical and regulatory

demands in AI deployment.

5

1.3 Exercises

1.1. Complexity of Matrix Inversion. Choose your favourite computer

architecture (represented by a mathematical model) and think about how

much computation is required - in the worst case - by the most efficient

algorithm that can invert any given invertible matrix Q ∈ Rd×d? Try also

to reflect on how practical your chosen computer architecture is, i.e., is it

possible to buy such a computer in your nearest electronics shop?

1.2. Vector Spaces and Euclidean Norm. Consider data points, each

characterized by a feature vector x ∈ Rd with entries x1, x2, . . . , xd.

• Show that the set of all feature vectors forms a vector space under

standard addition and scalar multiplication.

• Calculate the Euclidean norm of the vector x = (1,−2, 3)T .

• If x(1) = (1, 2, 3)T and x(2) = (−1, 0, 1)T , compute 3x(1) − 2x(2).

1.3. Matrix Operations in Linear Models. Linear regression methods

learn model parameters ŵ ∈ Rd via solving the optimization problem:

ŵ = arg min
w∈Rd

∥y −Xw∥22,

with some matrix X ∈ Rm×d, and some vector y ∈ Rm.

• Derive a closed-form expression for ŵ that is valid for arbitrary matrix

X, and vector y.

• Discuss the conditions under which XTX is invertible.

6

• Compute ŵ for the following dataset:

X =


1 2

3 4

5 6

 , y =


7

8

9

 .

• Compute ŵ for the following dataset: The rth row of X, for r =

1, . . . , 28, is given by the temperature recordings (with a 10-minute

interval) during day r/Mar/2023 at FMI weather station Kustavi Isokari.

The rth row of y is the maximum daytime temperature during day

r + 1/Mar/2023 at the same weather station.

1.4. Eigenvalues and Positive Semi-Definiteness. The convergence

properties of widely-used ML methods rely on the properties of psd matrices.

Let Q = XTX, where X ∈ Rm×d.

1. Prove that Q is psd.

2. Compute the eigenvalues of Q for X =

1 2

3 4

.

3. Compute the eigenvalues of Q for the matrix X used in Exercise 1.3

that is constituted by FMI temperature recordings.

7

2 Machine Learning Foundations for FL

This chapter covers basic ML techniques instrumental for FL. Content-wise,

this chapter is more extensive compared to the following chapters. However,

this chapter should be considerably easier to follow than the following chapters

as it mainly refreshes pre-requisite knowledge.

In Section 2.3, we begin with the basic components of any ML method:

data, a model and a loss functions. We also describe how these components

are combined through empirical risk minimization (ERM) which is a main

design principle for ML.

Section 2.2 then explores the computational aspects of ERM, focusing

on gradient-based methods for parametric models. Section 2.3 discusses

the statistical properties of ML methods and their analysis via probabilistic

models. Section 2.4 introduces the idea of model validation and discusses

simple rules for the diagnosis of ML methods.

Section 2.5 explains three fundamental forms of regularization: data

augmentation, model pruning and loss penalization. We will then show in

Section 2.6 how to use regularization to couple the training of local models at

different devices, resulting in FL.

2.1 Components of ML Systems: A Design Framework

ML revolves around learning a hypothesis map h out of a hypothesis space

H that allows to accurately predict the label of a data point solely from its

features. One of the most crucial steps in applying ML methods to a given

application domain is the definition or choice of what precisely a data point

8

is. Coming up with a good choice or definition of data points is not trivial as

it influences the overall performance of a ML method in many different ways.

We will use weather prediction as a recurring example of an FL application.

Here, data points represent the daily weather conditions around FMI weather

stations. We denote a specific data point by z. It is characterized by the

following features:

• name of the FMI weather station, e.g., “TurkuRajakari”

• latitude lat and longitude lon of the weather station, e.g., lat := 60.37788,

lon := 22.0964,

• timestamp of the measurement in the format YYYY-MM-DD HH:MM:SS,

e.g., 2023-12-31 18:00:00

It is convenient to stack the features into a feature vector x. The label y ∈ R

of such a data point is the maximum daytime temperature in degree Celsius,

e.g., −20. We indicate the features x and label y of a data point via the

notation z = (x, y).

Strictly speaking, a data point z is not the same as the pair of features

x and label y. Indeed, a data point can have additional properties that are

neither used as features nor as label. A more precise notation would then be

x(z) and y(z), indicating that the features x and label y are functions of the

data point z.

We predict the label of a data point with features x by the function value

h(x) of a hypothesis (map) h(·). The prediction will typically be not perfect,

i.e., h(x) ̸= y. ML methods use a loss function L ((x, y) , h) to measure the

error incurred by using the prediction h(x) as a guess for the true label y. The

9

choice of loss function crucially influences the statistical and computational

properties of the resulting ML method [23, Ch. 2].

It seems natural to learn a hypothesis by minimizing the average loss – or

empirical risk – on a given set of data points

D :=
{(

x(1), y(1)
)
, . . . ,

(
xm, y(m)

)}
.

This is known as ERM,

ĥ ∈ argmin
h∈H

(1/m)
m∑
r=1

L
((
x(r), y(r)

)
, h

)
. (1)

As the notation in (1) indicates, there can be several different solutions to

the optimization problem (1). We denote by ĥ one of these solutions, i.e., ĥ

is an element of the solution set for (1).

Several important ML methods use a parametric model H: Each hypothe-

sis h ∈ H is defined by parameters w ∈ Rd, often indicated by the notation

h(w). A prime example of a parametric model is the linear model [23, Sec.

3.1],

H(d) :=
{
h(w) : Rd 7→R : h(w)(x) = wTx

}
.

This book presents FL algorithms (see Chapter 5) that are flexible in

the sense of allowing to use different types of ML models. However, for

ease of exposition we mainly focus on the special case of linear models. The

restriction to linear models allows for a more comprehensive analysis of FL

applications. On the flip side, the scope of our analysis is limited to FL

applications involving local models that can be well approximated by linear

models.

Several important ML methods are obtained from the combination of

non-linear feature learning and a linear model. For example,

10

• a deep net with the hidden layers representing a trainable feature map

and the output layer implements a linear model [24], [23, Sec. 3.11.],

• a decision tree with a fixed topology that corresponds to a specific

decision boundary and trainable predictions for each decision region

[25], [23, Sec. 3.10],

• kernel methods [26], [23, Sec. 3.9].

Linear regression learns the parameters of a linear model by minimizing

the average squared error loss,

ŵ(LR) ∈ argmin
w∈Rd

(1/m)
m∑
r=1

(
y(r) −wTx(r)

)2︸ ︷︷ ︸
=L((x(r),y(r)),h(w))

. (2)

Note that (2) minimizes a smooth and convex function

f(w) := (1/m)

[
wTXTXw − 2yTXw + yTy

]
. (3)

Here, we use the feature matrix

X :=
(
x(1), . . . ,x(m)

)T ∈ Rm×d (4)

and the label vector

y :=
(
y(1), . . . , y(m)

)T ∈ Rm (5)

of the training set D.

Inserting (3) into (2) allows to formulate linear regression as

ŵ(LR) ∈ argmin
w∈Rd

wTQw +wTq (6)

with Q := (1/m)XTX,q := −(2/m)XTy.

11

The matrix Q ∈ Rd×d is psd with eigenvalue decomposition (EVD),

Q =
d∑

j=1

λju
(j)
(
u(j)

)T
. (7)

The EVD (7) consists of orthonormal eigenvectors u(1), . . . ,u(d) and corre-

sponding list of non-negative eigenvalues

0 ≤ λ1 ≤ . . . ≤ λd, with Qu(j) = λju
(j).

The list of eigenvalues is unique for a given psd matrix Q. In contrast, the

eigenvectors u(j) are not unique in general.

w

ŵ(LR)

wTQw +wTq

Fig. 2.1. ERM (1) for linear regression minimizes a convex quadratic function

wTQw +wTq.

To train a ML model H means to solve ERM (1) (or (2) for linear

regression); the dataset D is therefore referred to as a training set. The

trained model results in the learned hypothesis ĥ. Two key questions for the

analysis of a given ML method are:

• Computational aspects. How much compute do we need to solve

(1)?

12

• Statistical aspects. How useful is the solution ĥ to (1) in general,

i.e., how accurate is the prediction ĥ(x) for the label y of an arbitrary

data point with features x?

2.2 Computational Aspects of ERM

A principled approach to design ML methods is to apply some optimization

method to solve (1) [27]. Most of these optimization methods operate in

an iterative fashion: Starting from an initial choice h(0), they construct a

sequence

h(0), h(1), h(2), . . . ,

which are hopefully increasingly accurate approximations to a solution ĥ of

(1). The computational complexity of such a ML method can be measured

by the number of iterations required to guarantee some prescribed level of

approximation.

For a parametric model and a smooth loss function, we can solve (2) by

gradient-based methods: Starting from an initial parameters w(0), we iterate

the gradient step:

w(k) := w(k−1) − η∇f
(
w(k−1)

)
(3)
= w(k−1) + (2η/m)

m∑
r=1

x(r)
(
y(r) −

(
w(k−1)

)T
x(r)

)
. (8)

This gradient update can be compactly expressed using the feature matrix

13

(4) and label vector (5) as1

w(k) = w(k−1) + η · 2

m
XT(y −Xw(k−1)

)
.

How much computation do we need for one iteration of (8)? How many

iterations do we need? We will try to answer the latter question in Chapter

4. The first question can be answered more easily for a typical computational

infrastructure (e.g., “Python running on a commercial Laptop”). The evalua-

tion of (8) then typically requires around m arithmetic operations (addition,

multiplication).

It is instructive to consider the special case of a linear model that does

not use any feature, i.e., h(x) = w. For this extreme case, the ERM (2) has a

simple closed-form solution:

ŵ = (1/m)
m∑
r=1

y(r). (9)

Thus, for this special case of the linear model, solving (9) is to sum m

numbers y(1), . . . , y(m). The amount of computation, measured by the number

of elementary arithmetic operations, required by (9) is proportional to m.

2.3 Statistical Aspects of ERM

We can train a linear model on a given training set as ERM (2). But how

useful is the solution ŵ of (2) for predicting the labels of data points outside
1The gradient of the objective function (3) can be expressed as

∇f(w) = − 2

m
XT(y −Xw).

14

the training set? Consider applying the learned hypothesis h(ŵ) to an arbitrary

data point not contained in the training set. What can we say about the

resulting prediction error y − h(ŵ)(x) in general? In other words, how well

does h(ŵ) generalize beyond the training set.

A widely used approach to study the generalization of ML methods

uses a simple probabilistic models: The idea is to interpret data points

as independent and identically distributed (i.i.d.) random variable (RV)s

with common probability distribution p(x, y). Under this independent and

identically distributed assumption (i.i.d. assumption), we can evaluate the

overall performance of a hypothesis h ∈ H via the expected loss (or risk)

E{L ((x, y) , h)}. (10)

One example of a probability distribution p(x, y) relates the label y with

the features x of a data point as

y=wTx+ε with x∼N (0, I), ε∼N (0, σ2),E{εx}=0. (11)

A simple calculation reveals the expected squared error loss of a given linear

hypothesis h(x) = xT ŵ as

E{(y − h(x))2} = ∥w − ŵ∥2 + σ2. (12)

Strictly speaking, (12) only holds for constant model parameters ŵ. However,

the learned model parameters ŵ are often the output of a ML method that is

applied to a dataset D. If we interpret the data points in D as i.i.d. realizations

from some underlying probability distribution, we can replace the expectation

on the LHS of (12) with the conditional expectation E
{
(y − h(x))2

∣∣D}
[28].

15

The first component in (12) is the estimation error ∥w − ŵ∥2 of a ML

method that reads in the training set and delivers an estimate ŵ (e.g., via

(2)) for the parameters of a linear hypothesis. The second component σ2 in

(12) can be interpreted as the intrinsic noise level of the label y. We cannot

hope to find a hypothesis with an expected loss below σ2.

We next study the estimation error w−ŵ incurred by the specific estimate

ŵ = ŵ(LR) (6) delivered by linear regression methods. To this end, we first

use the probabilistic model (11) to decompose the label vector y in (5) as

y = Xw + n , with n :=
(
ε(1), . . . , ε(m)

)T
. (13)

Inserting (13) into (6) yields

ŵ(LR) ∈ argmin
w∈Rd

wTQw +wTq′ +wTe (14)

with Q :=(1/m)XTX,q′ :=−(2/m)XTXw, and e :=−(2/m)XTn. (15)

Figure 2.2 depicts the objective function of (14). It is a perturbation of the

convex quadratic function wTQw +wTq′, which is minimized at w = w. In

general, the minimizer ŵ(LR) delivered by linear regression is different from

w due to the perturbation term wTe in (14).

The following result bounds the deviation between ŵ(LR) and w under

the assumption that the matrix Q = (1/m)XTX is invertible.2

Proposition 2.1. Consider a solution ŵ(LR) to the ERM instance (14) that

is applied to the dataset (13). If the matrix Q = (1/m)XTX is invertible,
2Can you think of sufficient conditions on the feature matrix of the training set that

ensure Q = (1/m)XTX is invertible?

16

w
a

wŵ(LR)

wTQw+wTq′wTQw+wT (q′+e)

wTe

Fig. 2.2. The estimation error of linear regression is determined by the

effect of the perturbation term wTe on the minimizer of the convex quadratic

function wTQw +wTq′.

17

with minimum eigenvalue λ1(Q) > 0,

∥∥ŵ(LR) −w
∥∥2

2
≤ ∥e∥22

λ2
1

(15)
=

4

m2

∥∥XTn
∥∥2

2

λ2
1

. (16)

Proof. Let us rewrite (14) as

ŵ(LR) ∈ argmin
w∈Rd

f(w) with f(w) :=
(
w−w

)T
Q
(
w−w

)
+eT

(
w−w

)
. (17)

Clearly f
(
w
)
= 0 and, in turn, f(ŵ) = minw∈Rd f(w) ≤ 0. On the other

hand,

f(w)
(17)
=

(
w −w

)T
Q
(
w −w

)
+ eT

(
w −w

)
(a)

≥
(
w −w

)T
Q
(
w −w

)
− ∥e∥2 ∥w −w∥2

(b)

≥ λ1 ∥w −w∥22 − ∥e∥2 ∥w −w∥2 . (18)

Step (a) used Cauchy–Schwarz inequality and (b) used the EVD (7) of Q.

Evaluating (18) for w=ŵ and combining with f
(
ŵ
)
≤ 0 yields (16).

The bound (16) suggests that the estimation error ŵ(LR) − w is small if

λ1(Q) is large. This smallest eigenvalue of the matrix Q = (1/m)XTX could

be controlled by a suitable choice (or transformation) of features x of a data

point. Trivially, we can increase λ1(Q) by a factor of 100 if we scale each

feature by a factor of 10. However, this approach would also scale the error

term
∥∥XTn

∥∥2

2
in (16) by a factor of 100. For some applications, we can find

feature transformations that increase λ1(Q) but do not increase
∥∥XTn

∥∥2

2
. We

finally note that the error term
∥∥XTn

∥∥2

2
in (16) vanishes if the noise vector n

is orthogonal to the columns of the feature matrix X.

18

It is instructive to evaluate the bound (16) for the special case where each

data point has the same feature value x = 1. Here, the probabilistic model

(13) reduces to a “signal in noise” model [29],

y(r) = x(r)w + ε(r) with x(r) = 1, (19)

with some true underlying parameter w. The noise terms ε(r), for r = 1, . . . ,m,

are realizations of i.i.d. RVs with probability distribution N (0, σ2). The

feature matrix then becomes X = 1 and, in turn, Q = 1, λ1(Q) = 1.

Inserting these values into (16) results in the bound

(
ŵ(LR) − w

)2 ≤ 4 ∥n∥22 /m
2.

For the labels and features in (19), the solution of (14) is given by

ŵ(LR) = (1/m)
m∑
r=1

y(r)
(19)
= w + (1/m)

m∑
r=1

ε(r).

2.4 Validation and Diagnosis of ML

The above analysis of the generalization error started from postulating the

probabilistic model (11) for the generation of data points. Strictly speaking,

if the data points are not generated according to the probabilistic model the

bound (16) does not apply. Thus, we might want to use a more data-driven

approach for assessing the usefulness of a learned hypothesis ĥ obtained, e.g.,

from solving ERM (1).

Loosely speaking, validation tries to find out if a learned hypothesis ĥ

performs similarly well inside and outside the training set. A basic form of

validation is to compute the average loss of a learned hypothesis ĥ on some

19

data points not included in the training set. We refer to these data points as

the validation set.

Algorithm 1 summarizes a single iteration of a prototypical ML workflow

that consists of model training and validation. The workflow starts with an

initial choice of a dataset D, model H, and loss function L (·, ·). We then

repeat Algorithm 1 several times. After each repetition, based on the resulting

training error and validation error, we modify the some of the design choices

for the dataset, the model and the loss function.

Algorithm 1 One Iteration of ML Training and Validation
Input: dataset D, model H, loss function L (·, ·)

1: split D into a training set D(train) and a validation set D(val)

2: learn a hypothesis via solving ERM

ĥ ∈ argmin
h∈H

∑
(x,y)∈D(train)

L ((x, y) , h) (20)

3: compute resulting training error

Et := (1/|D(train)|)
∑

(x,y)∈D(train)

L
(
(x, y) , ĥ

)
4: compute validation error

Ev := (1/|D(val)|)
∑

(x,y)∈D(val)

L
(
(x, y) , ĥ

)

Output: learned hypothesis (or trained model) ĥ, training error Et and

validation error Ev

We can diagnose an ERM-based ML method, such as Algorithm 1, by

20

comparing its training error with its validation error. This diagnosis is further

enabled if we know a baseline E(ref). One important source for a baseline

E(ref) are probabilistic models for the data points.

Given a probabilistic model p(x, y), we can compute the minimum achiev-

able risk (10). Indeed, the minimum achievable risk is precisely the expected

loss of the Bayes estimator ĥ(x) of the label y, given the features x of a

data point. The Bayes estimator ĥ(x) is fully determined by the probability

distribution p(x, y) [30, Chapter 4].

A further potential source for a baseline E(ref) is an existing, but for

some reason unsuitable, ML method. This existing ML method might be

computationally too expensive to be used for the ML application at hand.

However, we might still use its statistical properties as a baseline.

We can also use the performance of human experts as a baseline. For

example,if we develop a ML method to detect skin cancer from images,

a possible baseline is the classification accuracy achieved by experienced

dermatologists [31].

We can diagnose a ML method by comparing the training error Et with

the validation error Ev and the baseline E(ref).

• Et ≈ Ev ≈ E(ref): The training error is on the same level as the

validation error and the baseline. There seems to be little point in trying

to improve the method further since the validation error is already close

to the baseline. Moreover, the training error is not much smaller than

the validation error which indicates that there is no overfitting.

• Ev ≫ Et: The validation error is significantly larger than the training

error, which hints at overfitting. We can address overfitting either by

21

reducing the effective dimension of the hypothesis space or by increasing

the size of the training set. To reduce the effective dimension of the

hypothesis space, we can use fewer features (in a linear model), a

smaller maximum depth of decision trees or fewer layers in an artificial

neural network (ANN). Instead of this coarse-grained discrete model

pruning, we can also reduce the effective dimension of a hypothesis

space continuously via regularization (see [23, Ch. 7]).

• Et ≈ Ev ≫ E(ref): The training error is on the same level as the

validation error and both are significantly larger than the baseline. Thus,

the learned hypothesis seems to not overfit the training set. However,

the training error achieved by the learned hypothesis is significantly

larger than the baseline. There can be several reasons for this to happen.

First, it might be that the hypothesis space is too small, i.e., it does not

include a hypothesis that provides a satisfactory approximation for the

relation between the features and the label of a data point. One remedy

to this situation is to use a larger hypothesis space, e.g., by including

more features in a linear model, using higher polynomial degrees in

polynomial regression, using deeper decision trees or ANNs with more

hidden layers (deep net). Second, besides the model being too small,

another reason for a large training error could be that the optimization

algorithm used to solve ERM (20) is not working properly (see Chapter

4).

• Et ≫ Ev: The training error is significantly larger than the validation

error. The idea of ERM (20) is to approximate the risk (10) of a

22

hypothesis by its average loss on a training set D = {(x(r), y(r))}mr=1.

The mathematical underpinning for this approximation is the law of large

numbers which characterizes the average of i.i.d. RVs. The accuracy

of this approximation depends on the validity of two conditions: First,

the data points used for computing the average loss “should behave”

like realizations of i.i.d. RVs with a common probability distribution.

Second, the number of data points used for computing the average loss

must be sufficiently large.

Whenever the training set or validation set differs significantly from

realizations of i.i.d. RVs, the interpretation (and comparison) of the

training error and the validation error of a learned hypothesis becomes

more difficult. Figure 2.3) illustrates an extreme case of a validation

set consisting of data points for which every hypothesis incurs a small

average loss. Here, we might try to increase the size of the validation set

by collecting more labelled data points or by using data augmentation.

If the size of the training set and the validation set is large but we

still obtain Et ≫ Ev, we should verify if the data points in these sets

conform to the i.i.d. assumption. There are principled statistical tests

for the validity of the i.i.d. assumption for a given dataset, see [32] and

references therein.

2.5 Regularization

Consider an ERM-based method with hypothesis space H and training set

D. A key indicator for the performance of such a ML method is the ratio

23

feature x

label y
h(1)

h(2)

h(3)

training set
validation set

Fig. 2.3. An example of an unlucky split of a dataset into a training set and

a validation set for the model H := {h(1), h(2), h(3)}.

deff (H) /|D| between the model size deff (H) and the number |D| of data

points. The tendency of the ML method to overfit increases with the ratio

deff (H) /|D|.

Regularization techniques decrease the ratio deff (H) /|D| via three ap-

proaches:

• collect more data points, possibly via data augmentation (see Figure

2.4),

• add a penalty term αR
{
h
}

to average loss in ERM (1)

ĥ ∈ argmin
h∈H

(1/m)
m∑
r=1

L
((
x(r), y(r)

)
, h

)
+αR

{
h
}
, (21)

• shrink the hypothesis space, e.g., by adding constraints on the model

parameters such as ∥w∥2 ≤ 10.

As illustrated in Figure 2.4, these three forms of regularization are closely

related [23, Ch. 7]. For example, the regularized ERM (21) is equivalent

24

to ERM (1) with a pruned hypothesis space H(α) ⊆ H. Using a larger α

typically results in a smaller H(α).

One example of regularization by adding a penalty term is ridge regression.

In particular, ridge regression uses the regularizer R
{
h
}
:= ∥w∥22 for a linear

hypothesis h(x) := wTx. Thus, ridge regression learns the parameters of a

linear hypothesis via solving

ŵ(α) ∈ argmin
w∈Rd

[
(1/m)

m∑
r=1

(
y(r) −wTx(r)

)2
+ α ∥w∥22

]
. (22)

The objective function in (22) can be interpreted as the objective function of

linear regression applied to a modification of the training set D: We replace

each data point (x, y) ∈ D by a sufficiently large number of i.i.d. realizations

of

(x+ n, y) , with n ∼ N (0, αI). (23)

Thus, ridge regression (22) is equivalent to linear regression applied to an

augmentation D′ of the original dataset D. The augmentation D′ is obtained

by replacing each data point (x, y) ∈ D with a sufficiently large number of

noisy copies. Each copy of (x, y) is obtained by adding an i.i.d. realization n

of a zero-mean Gaussian noise with covariance matrix αI to the features x

(see (23)). The label of each copy of (x, y) is equal to y, i.e., the label is not

perturbed.

To study the computational aspects of ridge regression, we rewrite (22) as

ŵ(α) ∈ argmin
w∈Rd

wTQw +wTq,

with Q := (1/m)XTX+ αI, q := (−2/m)XTy. (24)

25

feature x

label y
h(x)

√
α

original training set D
augmented

1
m

∑m
r=1 L

((
x(r), y(r)

)
, h
)
+αR

{
h
}

Fig. 2.4. Equivalence between data augmentation and loss penalization.

Thus, like linear regression (6), also ridge regression minimizes a convex

quadratic function. A main difference between linear regression (6) and ridge

regression (for α > 0) is that the matrix Q in (24) is guaranteed to be

invertible for any training set D. In contrast, the matrix Q in (6) for linear

regression might be singular for some training sets.3

The statistical properties of the solutions to (24) crucially depend on the

value of α. This choice can be guided by an error analysis using a probabilistic

model for the data (see Proposition 2.1). Instead of using a probabilistic

model, we can also compare the training error and validation error of the

hypothesis h(x) =
(
ŵ(α)

)T
x learned by ridge regression with different values

of α.
3Consider the extreme case where all features of each data point in the training set D

are zero.

26

2.6 From ML to FL via Regularization

The main theme of this book is the analysis of FL systems that consists of a

network of devices, indexed by i = 1, . . . , n. Each device i trains a local (or

personalized) model H(i). One natural way to couple the model training of

different devices is via regularization.

Assuming parametric models for ease of exposition, each device i = 1, . . . , n

solves a separate instance of regularized empirical risk minimization (RERM)

(21),4

ŵ(i) ∈ argmin
w(i)∈Rd

(1/m)
m∑
r=1

L
((
x(r), y(r)

)
, h

)
︸ ︷︷ ︸

=:Li(w(i))

+αR(i)
{
w(i)

}
. (25)

We can couple the instances of (25) at device i with other devices i′ ∈ V \ {i}

by using a regularizer R(i)
{
w(i)

}
that depends on their model parameters

w(i′). For example, we will study constructions for R(i)
{
w(i)

}
that penalize

deviations between the model parameters w(i) and those at other devices,

w(i′) for i′ ∈ N (i). Figure 2.5 illustrates a simple network of two devices, each

training a personalized model via (25). Chapter 3 will discuss in more detail

how to construct a useful regularizer R(i)
{
w(i)

}
.

4It will be convenient to avoid explicit reference to the local dataset of device i and

instead work with the local loss function Li

(
w(i)

)
. The FL algorithms studied in this book

require only access to Li

(
w(i)

)
.

27

device i device i′

ŵ(i)∈argmin
w(i)

Li

(
w(i)

)
+αR(i)(w(i)) ŵ(i′)∈argmin

w(i′)
Li′

(
w(i′)

)
+αR(i′)(w(i′))

R(i) depends on ŵ(i′)

R(i′) depends on ŵ(i)

Fig. 2.5. Two devices i and i′ learn personalized model parameters. Each

device executes a separate instance of regularized ERM with the regularizer

depending on the model parameters of the other device.

28

2.7 Exercises

2.1. Fundamental Limits for Linear Regression. Linear regression

learns model parameters of a linear model to minimize the risk E
{(

y−wTx
)2}

where (x, y) is a RV. In practice, we do not observe the RV (x, y) itself but

a (realization of a) sequence of i.i.d. samples
(
x(t), y(t)

)
, for t = 1, 2,

The minimax risk is a lower bound on the risk achievable by any learning

method [33, Ch. 15]. Determine the minimax risk in terms of the probability

distribution of (x, y).

2.2. Uniqueness of Eigenvectors. Consider the EVD Q =
∑d

j=1 λju
(j)
(
u(j)

)T
of a psd matrix Q. The EVD consists of orthonormal eigenvectors u(j) and

non-negative eigenvalues λj, with Qu(j) = λju
(j), for j = 1, . . . , d. Can you

provide conditions on the eigenvalues λ1 ≤ . . . ≤ λd such that the (unit-norm)

eigenvectors are unique?

2.3. Penalty Term as Data Augmentation. Consider a ML method

that trains a model with model parameters w. The training uses ERM with

squared error loss. Show that regularization of the model training via adding

a penalty term α ∥w∥22 is equivalent to a specific form of data augmentation.

What is the augmented training set?

2.4. Data Augmentation via Linear Interpolation. Consider a ML

method that trains a model, with model parameters w, from a training set

D. Each data point z ∈ D is characterized by a feature vector x ∈ Rd

and label y ∈ R, i.e., z = (x, y). We augment the training set by adding,

for each pair of two different data points z, z′ ∈ D, synthetic data points

z̃(r) := z + (z′ − z)r/100 and , for r = 0, . . . , 99. Does this augmentation

typically increase the training error?

29

2.5. Ridge Regression via Deterministic Data Augmentation. Ridge

regression is obtained from linear regression by adding the penalty term

α ∥w∥22 to the average squared error loss incurred by the hypothesis h(w) on

the training set D,

min
w

(1/m)
m∑
r=1

(
y(r) − h

(
x(r)

))2
+ α ∥w∥22 . (26)

Construct an augmented training set D′ such that the objective function of

(26) coincides with the objective function of plain linear regression using D′

as training set. To construct D′, add carefully chosen data points to the

original training set D =

{(
y(1),x(1)

)
, . . . ,

(
y(m),x(m)

)}
. Generalize the

construction of D′ to implement a generalized form of ridge regression,

min
w

(1/m)
m∑
r=1

(
y(r) − h

(
x(r)

))2
+ α ∥w − w̃∥22 . (27)

Here, we used some prescribed reference model parameters w̃. Note that (27)

reduces to basic ridge regression (26) for the specific choice w̃ = 0.

30

3 A Design Principle for FL

Chapter 2 reviewed ERM as a central design principle for traditional, central-

ized ML systems that rely on a single dataset to train a single model. This

chapter extends these foundations to the distributed setting of FL, where

learning takes place over a network of devices, each having their own datasets

and models.

We begin in Section 3.1 by introducing the notion of an FL network –

a mathematical abstraction for FL systems. Each node of an FL network

represents a device that collects a local dataset and trains a local model, while

the edges encode communication links and statistical similarities between

local datasets.

Section 3.2 introduces the concept of GTV as a measure of discrepancy

between local model parameters at connected nodes. This notion leads di-

rectly to Section 3.3, where we develop GTVMin as a principled regularization

framework for training parametric local models in a federated setting. We

then generalize this approach in Section 3.4 to accommodate non-parametric

local models, broadening its applicability. Finally, Section 3.5 offers several

interpretations of GTVMin that connect it to broader themes in applied math-

ematics and statistics, highlighting its conceptual and practical significance

in FL design.

3.1 FL Networks

Consider a FL system consisting of a collection of devices, indexed by i =

1, . . . , n. The number n of devices can be arbitrarily large—potentially on

31

the order of billions—as encountered in internet-scale FL applications.Each

device i can access a local dataset D(i) and train a personalized model H(i).

These devices collaborate over a communication network to learn a local

hypothesis h(i) ∈ H(i). The quality of each local hypothesis is assessed using

a loss function Li

(
h(i)

)
.

We now introduce the concept of an FL network as a mathematical model

for FL applications. An FL network consists of an undirected weighted graph

G = (V , E) with nodes V := {1, . . . , n} and undirected edges E between pairs

of different nodes. The nodes V represent devices with varying amounts of

computational resources.

An undirected edge {i, i′} ∈ E in an FL network represents a form of simi-

larity between device i and device i′. The amount of similarity is represented

by an edge weight Ai,i′ . We can collect edge weights into an adjacency matrix

A ∈ Rn×n, with Ai,i′ = Ai′,i. Figure 3.1 depicts an example of an FL network.

D(i),H(i)

D(i′),H(i′)

Ai,i′

Fig. 3.1. Example of an FL network whose nodes i ∈ V represent different

devices. Each device i generates a local dataset D(i) and trains a local model

H(i). Some devices i, i′ are connected by an undirected edge {i, i′} with a

positive edge weight Ai,i′ .

Note that the undirected edges E of an FL network encode a symmetric

notion of similarity between devices: If the device i is similar to the device

32

i′, i.e., {i, i′} ∈ E , then also the device i′ is similar to the device i. For some

FL applications, an asymmetric notion of similarity, represented by directed

edges, could be more accurate. However, the generalization of an FL network

to directed graphs is beyond the scope of this book.

It can be convenient to replace a given FL network G with an equivalent

fully connected FL network G ′ (see Figure 3.2). The fully connected graph G ′

contains an edge between every pair of two different nodes i, i′,

E ′ =
{
{i, i′} : i, i′ ∈ V , i ̸= i′

}
.

The edge weights are chosen A′
i,i′ = Ai,i′ for any edge {i, i′} ∈ E and A′

i,i′ = 0

if the original FL network G does not contain an edge between nodes i, i′.

1 2

3 4

1 2

3 4

Fig. 3.2. Left: An FL network G consisting of n = 4 nodes. Right: Equivalent

fully connected FL network G ′ with the same nodes and non-zero edge weights

A′
i,i′ = Ai,i′ for {i, i′} ∈ E and A′

i,i′ = 0 for {i, i′} /∈ E .

An FL network is more than the undirected weighted graph G: It also

includes the local dataset D(i) and the local model H(i) (or its model parame-

ters w(i)) for each device i ∈ V . The details of the generation and the format

of a local dataset will not be important in what follows. A local dataset is just

one possible means to construct a loss function in order to evaluate model

parameters. However, to build intuition, we can think of a local dataset D(i)

33

as a labelled dataset

D(i) :=
{(

x(i,1), y(i,1)
)
, . . . ,

(
x(i,mi), y(i,mi)

)}
. (28)

Here, x(i,r) and y(i,r) denote, respectively, the features and the label of the

rth data point in the local dataset D(i). Note that the size mi of the local

dataset can vary between different nodes i ∈ V .

It is convenient to collect the feature vectors x(i,r) and labels y(i,r) into a

feature matrix X(i) and label vector y(i), respectively,

X(i) :=
(
x(i,1), . . . ,x(i,mi)

)T , and y(i) :=
(
y(i,1), . . . , y(i,mi)

)T
. (29)

The local dataset D(i) can then be represented compactly by the feature

matrix X(i) ∈ Rmi×d and the vector y(i) ∈ Rmi .

Besides the local dataset D(i), each node i ∈ G also carries a local model

H(i). Our focus is on parametric local models with by model parameters

w(i) ∈ Rd, for i= 1, . . . , n. The usefulness of a specific choice of the local

model parameter w(i) is then measured by a local loss function Li

(
w(i)

)
, for

i = 1, . . . , n. Note that we can use different local loss functions Li (·) ̸= Li′ (·)

at different nodes i, i′ ∈ V .

We now have introduced all the components of an FL network. Strictly

speaking, an FL network is a tuple
(
G, {H(i)}i∈V , {Li (·)}i∈V

)
consisting of

an undirected weighted graph G, a local model H(i) and local loss function

Li (·) for each node i ∈ V. In principle, all of these components are design

choices that influence the computational and statistical properties of the FL

algorithms presented in Chapter 5. To some extend, also the edges E in the

FL network are a design choice.

34

The role (or meaning) of an edge {i, i′} in an FL network is two-fold: First,

it represents a communication link that allows to exchange messages between

devices i, i′. Second, an edge {i, i′} indicates similar statistical properties of

local datasets generated by devices i, i′. It then seems natural to learn similar

hypothesis maps h(i), h(i′). This is actually the main idea behind all the FL

algorithms that we will discuss in the rest of this book. To make this idea

precise, we next discuss how to obtain quantitative measures for how much

local hypothesis maps h(i) vary across the edges {i, i′} ∈ E of an FL network.

3.2 Generalized Total Variation

Consider an FL network with nodes i = 1, . . . , n, undirected edges E with

edge weights Ai,i′ > 0 for each {i, i′} ∈ E . For each edge {i, i′} ∈ E , we

want to couple the training of the corresponding local models H(i),H(i′). The

strength of this coupling is determined by the edge weight Ai,i′ . We implement

the coupling by penalizing the variation (or discrepancy)between the model

parameters w(i),w(i′).

We can measure the variation between two trained local models h(i), h(i′)

across an edge {i, i′} ∈ E in different ways. For example, we can compare

their predictions on a common test set D by computing

d(i,i
′) := (1/|D|)

∑
x∈D

[
h(i)(x)− h(i′)(x)

]2
. (30)

In principle, we can use a different test set in (30) for each edge {i, i′} of G.

For example, the test set could be obtained by merging randomly selected

data points from each local dataset D(i), D(i′).

Our main focus will be FL applications that use parametric local models,

35

i.e., each node learns local model parameters w(i) ∈ Rd, for i = 1, . . . , n. Here,

we can measure the variation between h(w(i)) and h(w(i′)) directly in terms of

the model parameters w(i),w(i′) at the nodes of an edge {i, i′}. In particular,

we use a penalty function ϕ : Rd → R of the difference between the model

parameters,

d(i,i
′) := ϕ

(
w(i) −w(i′)

)
. (31)

The penalty function ϕ will be mainly a design choice. Our main require-

ment is that ϕ is monotonically increasing5 with respect to some norm in

the Euclidean space Rd [16, 34]. This requirement ensures symmetry, i.e.,

ϕ
(
w(i) −w(i′)

)
= ϕ

(
w(i′) −w(i)

)
, allowing its use as a measure of variation

across an undirected edge {i, i′} ∈ E .

Summing up the edge-wise variations (weighted by the edge weights) yields

the GTV of a collection of local model parameters,∑
{i,i′}∈E

Ai,i′ϕ
(
w(i) −w(i′)

)
. (32)

Our main focus will be on the special case of (32), obtained for ϕ(·) := ∥·∥22,∑
{i,i′}∈E

Ai,i′

∥∥∥w(i) −w(i′)
∥∥∥2

2
. (33)

The choice of penalty ϕ(·) has a crucial impact on the computational and

statistical properties of the FL algorithms presented in Chapter 5. Our main

choice during the rest of this book will be the penalty function ϕ(·) := ∥·∥22.

This choice often allows to formulate FL as the minimization of a smooth

convex function, which can be done via simple gradient-based methods (see
5A function f : R → R is monotonically increasing if f(x) ≤ f(y) whenever x ≤ y. This

means that larger argument values never result in smaller function values.

36

Chapter 7). On the other hand, choosing ϕ to be a norm results in FL

algorithms that require more computation but less training data [34].

The connectivity of an FL network G can be characterized locally - around

a node i ∈ V - by its node degree

d(i) :=
∑

i′∈N (i)

Ai,i′ . (34)

Here, we used the neighborhood N (i) := {i′ ∈ V : {i, i′} ∈ E} of node i ∈ V.

A global characterization for the connectivity of G is the maximum node

degree

d(G)max := max
i∈V

d(i)
(34)
= max

i∈V

∑
i′∈N (i)

Ai,i′ . (35)

Besides inspecting the node degrees, we can study the connectivity of G

also via the eigenvalues and eigenvectors of its Laplacian matrix L(G) ∈ Rn×n.6

The Laplacian matrix of an undirected weighted graph G is defined element-

wise as

L
(G)
i,i′ :=


−Ai,i′ for i ̸= i′, {i, i′} ∈ E∑

i′′ ̸=iAi,i′′ for i = i′

0 else.

(36)

Figure 3.3 illustrates the Laplacian matrix of a small graph.

The Laplacian matrix is symmetric and psd, which follows from the
6The study of graphs via the eigenvalues and eigenvectors of associated matrices is the

main subject of spectral graph theory [35,36].

37

1

2 3

L(G) =


2 −1 −1

−1 1 0

−1 0 1



Fig. 3.3. Left: Example of an FL network G with three nodes i = 1, 2, 3

that are connected via two edges with unit weight A1,2 = A1,3 = 1. Right:

Laplacian matrix L(G) ∈ R3×3 of G.

identity

wT (L(G) ⊗ I)w =
∑

{i,i′}∈E

Ai,i′

∥∥∥w(i) −w(i′)
∥∥∥2

2

for any d ∈ N,w :=

((
w(1)

)T
, . . . ,

(
w(n)

)T)T

︸ ︷︷ ︸
=:stack

{
w(i)

}n

i=1

∈ Rdn. (37)

As a psd matrix, L(G) possesses an EVD

L(G) =
n∑

i=1

λiu
(i)
(
u(i)

)T
, (38)

with orthonormal eigenvectors u(1), . . . ,u(n) and corresponding list of eigen-

values

0 = λ1

(
L(G)) ≤ λ2

(
L(G)) ≤ . . . ≤ λn

(
L(G)). (39)

We just write λi instead of λi

(
L(G)) if the Laplacian matrix L(G) is clear from

context. The eigenvalue λi

(
L(G)) corresponds to the eigenvector u(i), i.e.,

L(G)u(i) = λi

(
L(G))u(i) for i = 1, . . . , n.

It is important to note that the ordered list of eigenvalues (39) is uniquely

38

determined for a given Laplacian matrix. In contrast, the eigenvectors u(i) in

(38) are not unique in general.7

The ordered eigenvalues λi

(
L(G)) in (39) can be computed (or character-

ized) via the Courant–Fischer–Weyl min-max characterization (CFW) [3, Thm.

8.1.2.]. Two important special cases of this characterization are [35,36]

λn

(
L(G)) CFW

= max
v∈Rn

∥v∥=1

vTL(G)v

(37)
= max

v∈Rn

∥v∥=1

∑
{i,i′}∈E

Ai,i′
(
vi − vi′

)2 (40)

and

λ2

(
L(G)) CFW

= min
v∈Rn

vT 1=0
∥v∥=1

vTL(G)v

(37)
= min

v∈Rn

vT 1=0
∥v∥=1

∑
{i,i′}∈E

Ai,i′
(
vi − vi′

)2
. (41)

By (37), we can compute the GTV of a collection of model parameters

via the quadratic form wT
(
L(G) ⊗ Id×d

)
w. This quadratic form involves the

vector w ∈ Rnd which is obtained by stacking the local model parameters

w(i) for i = 1, . . . , n. Another consequence of (37) is that any collection of

identical local model parameters, stacked into the vector

w = stack{c} =
(
cT , . . . , cT

)T , with some c ∈ Rd \ {0}, (42)

is an eigenvector of L(G) ⊗ I with corresponding eigenvalue λ1 = 0 (see (39)).

Thus, the Laplacian matrix of any FL network is singular (non-invertible).
7Consider the scenario where the list (39) contains repeated entries, i.e., some of the

eigenvectors have identical eigenvalues.

39

The second eigenvalue λ2 of L(G) provides a great deal of information about

the connectivity structure of G.8 Indeed, much of spectral graph theory is

devoted to the analysis of λ2, which is also referred to as algebraic connectivity,

for different graph constructions [35,36].

• Consider the case λ2 = 0: Here, beside the eigenvector (42), we can find

at least one additional eigenvector

w̃ = stack
{
w(i)

}n

i=1
with w(i) ̸= w(i′) for some i, i′ ∈ V , (43)

of L(G) ⊗ I with eigenvalue equal to 0. In this case, the graph G is not

connected graph, i.e., we can find two subsets (components) of nodes

that do not have any edge between them (see Figure 3.4). For each

connected component C, we can construct the eigenvector by assigning

the same (non-zero) vector c ∈ Rd \ {0} to all nodes i ∈ C and the zero

vector 0 to the remaining nodes i ∈ V \ C.

• On the other hand, if λ2 > 0 then G is connected graph. Moreover, the

larger the value of λ2, the stronger the connectivity between the nodes

in G. Indeed, adding edges to G can only increase the objective in (41)

and, in turn, λ2.

In what follows, we will make use of the lower bound [36, Thm. 2.0.1]

∑
{i,i′}∈E

Ai,i′

∥∥∥w(i) −w(i′)
∥∥∥2

2
≥ λ2

n∑
i=1

∥∥w(i) − avg{w(i)}
∥∥2

2
. (44)

8With slight abuse of language, we will sometimes speak about the eigenvalues of a

FL network G. However, we actually mean the eigenvalues of the Laplacian matrix (36)

naturally associated with G.

40

d(i) = 1

component C(1) component C(2)

Fig. 3.4. An FL network G that consists of n=6 nodes forming two connected

components C(1), C(2).

Here, avg{w(i)} := (1/n)
∑n

i=1 w
(i) is the average of all local model parameters.

The bound (44) follows from (37) and the CFW for the eigenvalues of the

matrix L(G) ⊗ I.

The quantity
∑n

i=1

∥∥w(i) − avg{w(i)}ni=1

∥∥2

2
on the right-hand side of (44)

has an interesting geometric interpretation: It is the squared Euclidean norm

of the projection of the stacked local model parameters

w :=

((
w(1)

)T
, . . . ,

(
w(n)

)T)T

onto the orthogonal complement of the subspace

S :=

{
1⊗ a : a ∈ Rd

}
=

{(
aT , . . . , aT

)T , for some a∈Rd

}
⊆Rdn. (45)

The subspace S consists of stacked local model parameters w(i) that are

identical for all nodes i = 1, . . . , n. Such a structure arises in certain FL

settings where a single global model is shared among all devices. In this

setting, the local model parameters satisfy w(i) = a for all i = 1, . . . , n and

some common vector a ∈ Rd (see Section 6.1). Equivalently, the condition

(
w(1), . . . ,w(n)

)T ∈ S

characterizes this Single-model setting as membership in the subspace S.

41

The projection PSw of w ∈ Rnd on S is

PSw =
(
aT , . . . , aT

)T , with a = avg{w(i)}ni=1. (46)

The projection on the orthogonal complement S⊥, in turn, is

PS⊥w = w −PSw = stack
{
w(i) − avg{w(i)}ni=1

}n

i=1
. (47)

3.3 Generalized Total Variation Minimization

Consider an FL network G whose nodes i ∈ V represent individual devices,

each learning personalized model parameters w(i). The quality of a specific

choice of model parameters is assessed via a local loss function Li

(
w(i)

)
,

typically derived from a training error applied to a local dataset.

Our focus is on FL applications where these local loss functions alone do

not suffice to reliably train a high-dimensional local model. For instance, the

local dataset D(i) used to compute the local loss function at some node i may

be too small relative to the effective dimension of the underlying local model

H(i), making the training process prone to overfitting (see Section 2.5).9

In such settings, collaboration between the devices across the edges of the

FL network becomes essential. To address this, we seek local model parameters

that not only minimize the local loss functions but also exhibit small GTV

(32). Requiring a small GTV couples the training among neighboring devices

and results in an implicit (and privacy-friendly) pooling of local datasets (see

Section 6.2).
9As a rule of thumb, the number of data points used to train a model should be

proportional to the (effective) number of its parameters.

42

GTV minimization (GTVMin) optimally balances the (average) local loss

and the GTV (32) of local model parameters w(i),

{
ŵ(i)

}n

i=1
∈ argmin

w(1),...,w(n)

∑
i∈V

Li

(
w(i)

)
+ α

∑
{i,i′}∈E

Ai,i′ϕ
(
w(i) −w(i′)

)
. (48)

Note that (48) is parametrized by the choice for the penalty function ϕ(·).

We discuss the effect of different choices for ϕ(·) in Section 3.3.1 and 3.3.2.

Our main focus will be on the special case of (48), obtained with ϕ(·) := ∥·∥22,{
ŵ(i)

}n

i=1
∈ argmin

w(1),...,w(n)

∑
i∈V

Li

(
w(i)

)
+α

∑
{i,i′}∈E

Ai,i′

∥∥∥w(i)−w(i′)
∥∥∥2

2
. (49)

The GTVMin parameter α>0 in (48) steers the preference for learning

local model parameters w(i) with small GTV versus incurring small local loss∑
i∈V Li

(
w(i)

)
. For α=0, GTVMin decomposes into fully independent local

ERM instances minw(i) Li (·), for i = 1, . . . , n. On the other hand, increasing

the value of α makes the solutions of (48) increasingly clustered: the local

model parameters ŵ(i) become approximately constant over increasingly large

subsets of nodes. This behavior is appealing for clustered FL which we discuss

in Section 6.2.

Choosing α beyond a critical value - that depends on the shape of the local

loss functions and the edges E - results in ŵ(i) being (nearly) constant over

all nodes i ∈ V . In practice, the choice of α can be guided by validation [37]

or by a probabilistic analysis of the solutions of (48). Section 3.3.2 presents

an example of such an analysis.

Note that GTVMin (48) is an instance of RERM: The regularizer is

the GTV of local model parameters over the weighted edges Ai,i′ of the FL

network. Loosely speaking, GTVMin couples the training of local models

43

by requiring them to be similar across the edges of the FL network. For the

extreme case of an FL network without any edges, GTVMin decomposes into

independent ERM instances

argmin
w(i)

Li

(
w(i)

)
, for each i = 1, . . . , n.

The connectivity (i.e., the edges E) of the FL network is an important

design choice in GTVMin-based methods. This choice can be guided by

computational aspects and statistical aspects of GTVMin-based FL systems.

Some application domains allow to leverage domain expertise to guess a

useful choice for the FL network. If local datasets are generated at different

geographic locations, we might use nearest-neighbour graphs based on geodesic

distances between data generators (e.g., FMI weather stations). Chapter 7

discusses graph learning methods that determine the edge weights Ai,i′ in a

data-driven fashion, i.e., directly from the local datasets D(i),D(i′).

GTVMin for linear models. Let us now consider the special case of

GTVMin with local models being a linear model. For each node i ∈ V of

the FL network, we want to learn the parameters w(i) of a linear hypothesis

h(i)(x) :=
(
w(i)

)T
x. We measure the quality of the parameters via the average

squared error loss

Li

(
w(i)

)
:= (1/mi)

mi∑
r=1

(
y(i,r) −

(
w(i)

)T
x(i,r)

)2

(29)
= (1/mi)

∥∥y(i) −X(i)w(i)
∥∥2

2
. (50)

Inserting (50) into (49), yields the following instance of GTVMin to train

local linear models,{
ŵ(i)

}
∈argmin
{w(i)}ni=1

∑
i∈V

(1/mi)
∥∥y(i)−X(i)w(i)

∥∥2

2
+α

∑
{i,i′}∈E

Ai,i′

∥∥∥w(i)−w(i′)
∥∥∥2

2
. (51)

44

The identity (37) allows to rewrite (51) using the Laplacian matrix L(G) as

ŵ(i)∈ argmin
w=stack

{
w(i)

}∑
i∈V

(1/mi)
∥∥y(i)−X(i)w(i)

∥∥2

2
+αwT

(
L(G) ⊗ Id

)
w. (52)

Let us rewrite the objective function in (52) as

wT



Q(1) · · · 0

...

0 · · · Q(n)

+αL(G) ⊗ I

w+
((
q(1)

)T
, . . . ,

(
q(n)

)T)
w (53)

with Q(i)=(1/mi)
(
X(i)

)T
X(i) and q(i) := (−2/mi)

(
X(i)

)T
y(i).

Thus, like linear regression (6) and ridge regression (24), GTVMin (52) (for

local linear models H(i)) minimizes a convex quadratic function,

{
ŵ(i)

}n

i=1
∈ argmin

w=stack
{
w(i)

}n

i=1

wTQw + qTw. (54)

Here, we used the psd matrix

Q :=


Q(1) · · · 0

...

0 · · · Q(n)

+αL(G)⊗I with Q(i) :=(1/mi)
(
X(i)

)T
X(i) (55)

and the vector

q :=
((
q(1)

)T
, . . . ,

(
q(n)

)T)T , with q(i) := (−2/mi)
(
X(i)

)T
y(i). (56)

3.3.1 Computational Aspects of GTVMin

Chapter 5 will apply optimization methods to solve GTVMin (48), resulting

in practical FL algorithms. Different instances of GTVMin favour different

45

classes of optimization methods. For example, using a differentiable loss

function Li (·) and penalty function ϕ(·) allows to apply gradient-based

methods (see Chapter 4) to solve GTVMin. Another important class of

loss functions are those for which we can efficiently compute the proximal

operator [38, 39]

proxLi(·),ρ(w) := argmin
w′∈Rd

Li (w
′) + (ρ/2) ∥w −w′∥22 for some ρ > 0. (57)

We refer to functions Li (·) for which (57) can be computed easily as simple or

proximable [40]. GTVMin (49) with proximable loss functions can be solved

via proximal algorithms [39]. Besides influencing the choice of optimization

method, the design choices underlying GTVMin also determine the amount

of computation that is required by a given optimization method.

Chapter 5 discusses FL algorithms that are obtained by applying fixed-

point iterations to solve GTVMin. These fixed-point iterations repeatedly

apply a fixed-point operator which is determined by the FL network (including

the choice for the local loss functions, local models and edges in the FL

network). The computational complexity of the resulting iterative method

has two factors: (i) the amount of computation required by a single iteration

(i.e., the per-iteration complexity) and (ii) the number iterations required

by the method to achieve a sufficiently accurate approximate solution of

GTVMin.

The fixed-point iterations used in Chapter 5 to design FL algorithms can

be implemented as message passing over the FL network. These algorithms

require an amount of computation that is proportional to the number of edges

of the FL network. Clearly, using an FL network with few edges (i.e., using a

sparse graph) results in a smaller per-iteration complexity.

46

The number of iterations required by an FL algorithm employing a fixed-

point operator F depends on the contraction properties of F . These contrac-

tion properties can be influenced through design choices for the FL network,

such as selecting local loss functions that are strongly convex. In addition to

affecting the iteration count, the contraction properties of F also play a cru-

cial role in determining whether the FL algorithm can tolerate asynchronous

execution.

It is instructive to study the computational aspects of the special case

of GTVMin (51) for local linear models. As discussed above, this instance

is equivalent to solving (54). Any solution ŵ of (54) (and, in turn, (51)) is

characterized by the zero-gradient condition

Qŵ = −(1/2)q, (58)

with Q,q as defined in (55) and (56). If the matrix Q in (58) is invertible,

the solution to (58) and, in turn, to the GTVMin instance (51) is unique and

given by ŵ = (−1/2)Q−1q.

The size of the matrix Q (see (55)) is proportional to the number of nodes

in the FL network G which might be in the order of millions (or even billions)

for internet-scale applications. For such large systems, we typically cannot use

direct matrix inversion methods (such as Gaussian elimination) to compute

Q−1.10 Instead, we typically need to resort to iterative methods [41,42].

One important family of such iterative methods are the gradient-based

methods which we will discuss in Chapter 4. Starting from an initial choice

of the local model parameters ŵ0 =
(
ŵ

(1)
0 , . . . , ŵ

(n)
0

)
, these methods repeat

10How many arithmetic operations (addition, multiplication) do you think are required

to invert an arbitrary matrix Q ∈ Rd×d?

47

variants of a gradient step,

ŵk+1 := ŵk − η
(
2Qŵk + q

)
for k = 0, 1,

The gradient step results in the updated local model parameters ŵ(i) which

we stacked into

ŵk+1 :=

((
ŵ(1)

)T
, . . . ,

(
ŵ(n)

)T)T

.

We repeat the gradient step for a sufficient number of times, according to

some stopping criterion (see Chapter 4).

3.3.2 Statistical Aspects of GTVMin

How useful are the solutions of GTVMin (49) as a choice for the local model

parameters? To answer this question, we use - as for the statistical analysis of

ERM in Chapter 2 - a probabilistic model for the local datasets. In particular,

we use a variant of an i.i.d. assumption: Each local dataset D(i) consists of

data points whose features and labels are realizations of i.i.d. RVs

y(i) =
(
x(i,1), . . . ,x(i,mi)

)T︸ ︷︷ ︸
local feature matrix X(i)

w(i) + ε(i) (59)

with x(i,r) i.i.d.∼ N (0, I), for r = 1, . . . ,mi, i = 1, . . . , n,

and ε(i)∼N (0, σ2I), for i = 1, . . . , n.

In contrast to the probabilistic model (11) (which we used for the analysis of

ERM), the probabilistic model (59) allows for different node-specific parame-

ters w(i), for i ∈ V. In particular, the entire dataset obtained from pooling

all local datasets does not conform to an i.i.d. assumption.

In what follows, we focus on the GTVMin instance (51) to learn the

parameters w(i) of a local linear model for each node i ∈ V . For a reasonable

48

choice of FL network, the parameters w(i),w(i′) at connected nodes {i, i′} ∈ E

should be similar. We cannot choose the edge weights based on parameters

w(i) as they are unknown. However, we can still use estimates of w(i) that

are computed from the available local datasets (see Chapter 7).

Consider an FL network with nodes carrying local datasets generated

from the probabilistic model (59) with true model parameters w(i). For ease

of exposition, we assume that

w(i) = c, for some c ∈ Rd and all i ∈ V . (60)

To study the deviation between the solutions ŵ(i) of (51) and the true

underlying parameters w(i), we decompose it as

ŵ(i) = w̃(i) + ĉ, with ĉ := (1/n)
n∑

i′=1

ŵ(i′). (61)

The component ĉ is identical at all nodes i ∈ V and obtained as the orthogo-

nal projection of ŵ = stack
{
ŵ(i)}ni=1 on the subspace (45). The component

w̃(i) := ŵ(i) − (1/n)
∑n

i′=1 ŵ
(i′) consists of the deviations, for each node i,

between the GTVMin solution ŵ(i) and their average over all nodes. Triv-

ially, the average of the deviations w̃(i) across all nodes is the zero vector,

(1/n)
∑n

i=1 w̃
(i) = 0.

The decomposition (61) entails an analogous (orthogonal) decomposition

of the error ŵ(i)−w(i). Indeed, for identical true underlying model parameters

(60) (which makes w an element of the subspace (45)), we have

n∑
i=1

∥∥ŵ(i) −w(i)
∥∥2

2

(60),(61)
=

n∑
i=1

∥c− ĉ∥22︸ ︷︷ ︸
n∥c−ĉ∥22

+
n∑

i=1

∥∥w̃(i)
∥∥2

2
. (62)

49

The following proposition provides an upper bound on the second error

component in (62).

Proposition 3.1. Consider a connected FL network, i.e., λ2 > 0 (see (39)),

and the solution (61) to GTVMin (51) for the local datasets (59). If the true

local model parameters in (59) are identical (see (60)), we can upper bound

the deviation w̃(i) := ŵ(i) − (1/n)
∑n

i=1 ŵ
(i) of learned model parameters ŵ(i)

from their average, as
n∑

i=1

∥∥w̃(i)
∥∥2

2
≤ 1

λ2α

n∑
i=1

(1/mi)
∥∥ε(i)∥∥2

2
. (63)

Proof. See Section 3.7.1.

Note that Proposition 3.1 only applies to GTVMin over a FL network

with a connected graph G. A necessary and sufficient condition for G to be

connected is that the second smallest eigenvalue is positive, λ2 > 0. However,

for an FL network with a graph G that is not connected, we can still apply

Proposition 3.1 separately to each connected component of G.

The upper bound (63) involves three components:

• the properties of local datasets, via the noise terms ε(i) in (59),

• the FL network via the eigenvalue λ2

(
L(G)) (see (39)),

• the GTVMin parameter α.

According to (63), we can ensure a small error component w̃(i) of the GTVMin

solution by choosing a large value α. Thus, by (62), for sufficiently large α,

the local model parameters ŵ(i) delivered by GTVMin are approximately

identical for all nodes i ∈ V of a connected FL network (where λ2

(
L(G)) > 0).

50

Enforcing identical local model parameters at all nodes of a FL network

is desirable for FL applications that require to learn a common (global)

model parameters for all nodes [12]. However, some FL applications involve

heterogeneous devices that generate local datasets with significantly different

statistics [34]. For such applications it is detrimental to enforce common

model parameters at all nodes (see Chapter 6). Instead, we should enforce

common model parameters only for nodes with local datasets having similar

statistical properties. This is exactly the objective of clustered FL which we

discuss in Section 6.2.

3.4 Non-Parametric Models in FL Networks

In its basic form (49), GTVMin can only be applied to parametric local

models with model parameters belonging to the same Euclidean space Rd.

Some FL applications involve non-parametric local models (such as decision

trees) or parametric local models with varying parametrizations (e.g., nodes

use different deep net architectures). Here, we cannot use the difference

between model parameters as a measure for the discrepancy between h(i) and

h(i′) across an edge {i, i′} ∈ E .

One way to measure the discrepancy between two hypothesis maps h(i), h(i′)

is to compare their predictions on a dataset

D{i,i′} =
{
x(1), . . . ,x(m′)

}
.

For each edge {i, i′}, the connected nodes need to agree on dataset D{i,i′}.

Note that the dataset D{i,i′} can be different for different edges. Examples

for constructions of D{i,i′} include i.i.d. realizations of some probability

51

distribution or by using subsets of D(i) and D(i′) (see Exercise 3.8).

We compare the predictions delivered by h(i) and h(i′) on D{i,i′} using

some loss function L. In particular, we define the discrepancy measure

d(i,i
′) := (1/m′)

∑
x∈D{i,i′}

(1/2)
[
L
((

x, h(i)
(
x
))

, h(i′)
)

+ L
((

x, h(i′)
(
x
))

, h(i)
)]

. (64)

Different choices for the loss function in (64) result in different computational

and statistical properties of the resulting FL algorithms. For real-valued

predictions we can use the squared error loss in (64), yielding

d(i,i
′) := (1/m′)

∑
x∈D{i,i′}

[
h(i)

(
x
)
− h(i′)

(
x
)]2

. (65)

We can generalize GTVMin by replacing
∥∥w(i) −w(i′)

∥∥2

2
in (49) with the

discrepancy d(h
(i),h(i′)) (64) (or the special case (65)). This results in{

ĥ(i)
}n

i=1
∈ argmin

h(i)∈H(i)

i∈V

∑
i∈V

Li

(
h(i)

)
+α

∑
{i,i′}∈E

Ai,i′d
(h(i),h(i′)). (66)

3.5 Interpretations

We next discuss some interpretations of GTVMin (48).

Empirical Risk Minimization. GTVMin (49) is obtained as a special

case of ERM (1) for specific choices for the model H and loss function L. The

model (or hypothesis space) used by GTVMin is a product space generated

by the local models at the nodes of an FL network. The loss function of

GTVMin consists of two parts: the sum of loss functions at each node and a

penalty term that measures the variation of local models across the edges of

the FL network.

52

Generalized Convex Clustering. One important special case of

GTVMin (48) is convex clustering [43, 44]. Indeed, convex clustering is

obtained from (48) using the local loss function

Li

(
w(i)

)
= ∥w(i) − a(i)∥2, for all nodes i ∈ V (67)

and the GTV penalty function ϕ(u) = ∥u∥p with some p ≥ 1.11 The vectors

a(i), for i = 1, . . . , n, are the features of data points that we wish to cluster in

(67). Thus, we can interpret GTVMin as a generalization of convex clustering:

we replace the terms ∥w(i) − a(i)∥2 with a more general local loss function.

Dual of Minimum-Cost Flow Problem. The optimization variables of

GTVMin (48) are the local model parameters w(i), for each node i ∈ V in an

FL network G. The optimization of node-wise variables w(i), for i = 1, . . . , n,

is naturally associated with a dual problem [45]. This dual problem optimizes

edge-wise variables u({i,i′}), one for each edge {i, i′} ∈ E of G,

max
u(e),e∈E
w(i),i∈V

−
∑
i∈V

L∗
i

(
w(i)

)
− α

∑
e∈E

Aeϕ
∗(u(e)/(αAe)

)
(68)

subject to −w(i)=
∑
e∈E
e+=i

u(e) −
∑
e∈E
e−=i

u(e) for each i ∈ V . (69)

Here, we have introduced an orientation for each edge e := {i, i′}, by defining

the head e− := min{i, i′} and the tail e+ := max{i, i′}.12 Moreover, we used

11Here, we used the p-norm ∥u∥p :=
(∑d

j=1 |uj |p
)1/p of a vector u ∈ Rd.

12We use this orientation only for notational convenience to formulate the dual of

GTVMin. The orientation of an edge (by choosing a head and tail) has no practical

meaning in terms of GTVMin-based FL algorithms. After all, GTVMin (48) and its dual

(68) are defined for an FL network with undirected edges E .

53

i

w(i)

i′

w(i′)
u(e)

e = {i, i′}

Fig. 3.5. Two nodes of an FL network that are connected by an edge e = {i, i′}.

GTVMin (48) optimizes local model parameters w(i) for each node i ∈ V in

the FL network. The dual (68) of GTVMin optimizes local parameters u(e)

for each edge e ∈ E in the FL network.

the convex conjugates L∗
i (·) , ϕ∗ of the local loss function Li (·) and GTV

penalty function ϕ.13

The dual problem (68) generalizes the optimal flow problem [45, Sec. 1J]

to vector-valued flows. The special case of (68), obtained when the GTV

penalty function ϕ is a norm, is equivalent to a generalized minimum-cost flow

problem [47, Sec. 1.2.1]. Indeed, the maximization problem (68) is equivalent

to the minimization

min
u(e),e∈E
w(i),i∈V

∑
i∈V

L∗
i

(
w(i)

)
subject to −w(i) =

∑
e∈E
e+=i

u(e) −
∑
e∈E
e−=i

u(e) for each node i ∈ V

∥u(e)∥∗ ≤ αAe for each edge e ∈ E . (71)

The optimization problem (71) reduces to the minimum-cost flow problem [47,
13The convex conjugate of a function f : Rd → R is defined as [46]

f∗(x) := sup
z∈Rd

xT z− f(z). (70)

54

Eq. (1.3) - (1.5)] for scalar local model parameters w(i) ∈ R.

Locally Weighted Learning. The solution of GTVMin are local model

parameters ŵ(i) that tend to be clustered: Each node i ∈ V belongs to a

subset or cluster C ⊆ V . All the nodes in C have nearly identical local model

parameters, ŵ(i′) ≈ w(C) for all i′ ∈ C [34]. The cluster-wise model parameters

w(C) are the solutions of

min
w

∑
i′∈C

Li′ (w) , (72)

which, in turn, is an instance of a locally weighted learning problem [48, Sec.

3.1.2]

w(C) = argmin
w∈Rd

∑
i′∈V

ρi′Li′ (w) . (73)

Indeed, we obtain (72) from (73) by setting the weights ρi′ equal to 1 if i′ ∈ C

and 0 otherwise.

55

3.6 Exercises

3.1. Spectral Radius of Laplacian Matrix. The spectral radius ρ(Q) of

a square matrix Q is the largest magnitude of an eigenvalue,

ρ(Q) := max{|λ| : λ is an eigenvalue of Q}.

Consider the Laplacian matrix L(G) of an FL network with undirected graph G.

Show that ρ
(
L(G)) = λn

(
L(G)) and verify the upper bound λn

(
L(G)) ≤ 2d

(G)
max.

Try to find a graph G such that λn

(
L(G)) ≈ 2d

(G)
max.

3.2. Null Space of the Laplacian matrix. Consider an undirected

weighted graph G with n nodes, indexed by i = 1, . . . , n. A component of G

is a subset C ⊆ V of nodes such that every pair of nodes in C is connected by

a path within C, and there are no edges connecting nodes in C to nodes in

V \ C. If G is connected, it has a single component, namely the entire node

set V. Let L(G) denote the Laplacian matrix of G. The null space of L(G) is

the subspace K ⊆ Rn defined as

K :=
{
v ∈ Rn

∣∣L(G)v = 0
}
.

Show that the dimension of K is equal to the number of components in G.

3.3. Null-Space Visualization. Consider an FL network with n = 2 nodes.

Each node i ∈ {1, 2} carries a scalar local model parameter w(i) ∈ R. We can

conveniently represent the local model parameters by stacking them into the

vector

w =
(
w(1), w(2)

)T ∈ R2.

This exercise requires you to visualize the subspace S (45) of R2.

56

1. Draw the subspace S as a line in the plane R2. Label your axes as w(1)

and w(2). Indicate at least two vectors that belong to S.

2. Determine and draw the orthogonal complement S⊥ of S. Label it

clearly in your drawing.

3. Give a specific example of a nonzero vector b ∈ S⊥, and verify that

it is orthogonal to an arbitrary vector a ∈ S by computing the inner

product b⊤a.

3.4. Toy Example of Spectral Clustering. Consider the graph G depicted

in Figure 3.6. The Laplacian matrix has two zero eigenvalues λ1=λ2=0.

i=12

3 4

5 6

component C(1) component C(2)

Fig. 3.6. An undirected graph G that consists of two connected components

C(1), C(2).

Can you find corresponding orthonormal eigenvectors u(1),u(2)? Are they

unique?

3.5. Adding an Edge Increases Connectivity. Consider an undirected

weighted graph G with Laplacian matrix L(G). We construct a new graph

G ′, with Laplacian matrix L(G′), by adding a new edge to G. Show that

λ2(G ′) ≥ λ2(G), i.e., the second smallest eigenvalue of L(G′) is at least as large

as the second smallest eigenvalue of L(G).

3.6. Capacity of an FL network. Consider the FL network shown in

Figure 3.7. Each node holds a local dataset, with its size indicated by the

57

10 MB

45

33

5 10

1 kbps 2

1

2

1

Fig. 3.7. An FL network whose nodes i = 1, . . . , 5 represent devices that hold

local datasets whose size is indicated next to each node.

adjacent numbers. The devices communicate over bi-directional links, whose

capacities are specified by the numbers next to the edges. What is the

minimum time required for the leftmost node to collect all local datasets from

the other nodes?

3.7. Discrepancy Measures. Consider an FL network with nodes car-

rying parametric local models, each having model parameters w(i) ∈ Rd.

Is it possible to construct a dataset D{i,i′} such that (65) coincides with∥∥w(i) −w(i′)
∥∥2

2
?

3.8. Privacy-Friendly Discrepancy Measures. The discrepancy measure

(64) requires to choose a test-set D{i,i′}. One possible choice is to combine

data points of the local datasets D(i) and D(i′). However, sharing these data

points can be harmful as they potentially leak sensitive information. Could

you think of a simple message passing protocol between node i and i′ that

allows them to evaluate (64) only by sharing the predictions h(i)(x), h(i′)(x)

for x ∈ D{i,i′}?

58

3.9. Structure of GTVMin. What are sufficient conditions for the local

datasets and the edge weights used in GTVMin such that the matrix Q in

(55) is invertible?

3.10. Existence and Uniqueness of GTVMin Solution. Consider

the GTVMin instance (49), defined over an FL network with the weighted

undirected graph G.

1. Existence. Can you state a sufficient condition on the local loss

functions and the weighted edges of G such that (49) has at least one

solution?

2. Uniqueness. Then, try to find a condition that ensures that (49) has

a unique solution.

3. Finally, try to find necessary conditions for the existence and uniqueness

of solutions to (49).

3.11. Computing the Average. Consider an FL network with each nodes

carrying a single model parameter w(i) and a local dataset, consisting of a

single number y(i). Construct an instance of GTVMin such that its solutions

are given by ŵ(i) ≈ (1/n)
∑n

i=1 y
(i) for all i = 1, . . . , n.

3.12. Computing the Average over a Star. Consider the FL network

depicted in Figure 3.8, which consists of a centre node i0 which is connected

to n− 1 peripheral nodes P := V \ {i0}. Each peripheral node i ∈ P carries

a local dataset that consists of a single real-valued observation y(i) ∈ R.

Construct an instance of GTVMin, using real-valued local model parameters

w(i) ∈ R, such that the solution satisfies ŵ(i0) ≈ (1/(n− 1))
∑

i∈P y(i).

59

i0

i ∈ P

Fig. 3.8. An FL network that consists of a centre node i0 that is connected

to several peripheral nodes P := V \ {i0}.

3.13. Fundamental Limits. Consider the FL network depicted in Figure

3.9. Each node carries a local model with single parameter w(i) as well as

a local dataset that consists of a single number y(i). We use a probabilistic

model for the local datasets: y(i) = w̄ + n(i). Here, w̄ is some fixed but

unknown number and n(i) ∼ N (0, 1) are i.i.d. Gaussian RVs. We use a

message-passing FL algorithm to estimate c based on the local datasets.

What is a fundamental limit on the accuracy of the estimate ĉ(i) delivered at

some fixed node i by such an algorithm after two iterations? Compare this

limit with the risk E
{(

ŵ(i) − w̄
)2} incurred by the estimate ŵ(i) delivered by

running Algorithm 4 for two iterations.

3.14. Counting Number of Paths. Consider an undirected graph G with

each edge {i, i′} ∈ E having unit edge weight Ai,i′ = 1. A k-hop path, for some

k ∈ {1, 2,}, between two nodes i, i′ ∈ V is a node sequence i(1), . . . , i(k+1)

such that i(1) = i, i(k+1) = i′, and {i(r), i(r+1)} ∈ E for reach r = 1, . . . , k.

Show that the number of k-hop paths between two nodes i, i′ ∈ V is given by(
Ak

)
i,i′

.

60

i

Fig. 3.9. An FL network containing a node i with node degree d(i) = 3, like

all its neighbors i′ ∈ N (i). We use an FL algorithm to learn local model

parameters w(i). If the algorithm employs message passing, the first iteration

provides access only to the local datasets of the neighbors in N (i) (located

along the inner dashed circle). In the second iteration, the algorithm gains

access to the local datasets of the neighbors N (i′) of each i′ ∈ N (i). These

second-hop neighbors are located along the outer dashed circle.

61

3.15. Proximal operator of a quadratic function. Study the proximal

operator (57) for a quadratic function,

Li

(
w(i)

)
=

(
w(i)

)T
Qw(i) + qTw(i) + q,

with some matrix Q ∈ Rd×d, vector q ∈ Rd and number q ∈ R.

62

3.7 Proofs

3.7.1 Proof of Proposition 3.1

Let us introduce the shorthand f
(
w(i)

)
for the objective function of the

GTVMin instance (51). We verify the bound (63) by showing that if it does

not hold, the choice of the local model parameters w(i) := w(i) (see (59))

results in a smaller objective function value, f
(
w(i)

)
< f

(
ŵ(i)

)
. This would

contradict the fact that ŵ(i) is a solution to (51).

First, note that

f
(
w(i)

)
=

∑
i∈V

(1/mi)
∥∥y(i)−X(i)w(i)

∥∥2

2
+α

∑
{i,i′}∈E

Ai,i′

∥∥∥w(i)−w(i′)
∥∥∥2

2

(60)
=

∑
i∈V

(1/mi)
∥∥y(i)−X(i)w(i)

∥∥2

2

(59)
=

∑
i∈V

(1/mi)
∥∥X(i)w(i)+ε(i)−X(i)w(i)

∥∥2

2

=
∑
i∈V

(1/mi)
∥∥ε(i)∥∥2

2
. (74)

Inserting (61) into (51),

f
(
ŵ(i)

)
=

∑
i∈V

(1/mi)
∥∥y(i)−X(i)ŵ(i)

∥∥2

2︸ ︷︷ ︸
≥0

+α
∑

{i,i′}∈E

Ai,i′

∥∥∥ŵ(i)−ŵ(i′)
∥∥∥2

2︸ ︷︷ ︸
(61)
= ∥w̃(i)−w̃(i′)∥2

2

≥ α
∑

{i,i′}∈E

Ai,i′

∥∥∥w̃(i)−w̃(i′)
∥∥∥2

2

(44)
≥ αλ2

n∑
i=1

∥∥w̃(i)
∥∥2

2
. (75)

If the bound (63) would not hold, then by (75) and (74) we would obtain

f
(
ŵ(i)

)
> f

(
w(i)

)
. This is a contradiction to the fact that ŵ(i) solves (51).

63

.

4 Gradient Methods for Federated Optimiza-

tion

Chapter 3 introduced GTVMin as a central design principle for FL algorithms.

Many important instances of GTVMin require the minimization of a smooth

objective function f(w) over a continuous parameter space. This chapter

investigates how gradient-based methods –a broadly used family of iterative

optimization methods – can be employed to solve such problems. These

methods rely on local approximations of f(w) using its gradient.

Section 4.1 introduces the basic gradient step and explains how it updates

model parameters in the direction of steepest descent. Key considerations

such as the choice of the learning rate are discussed in Section 4.2, along

with stopping criteria in Section 4.3 that help determine when to terminate

the optimization process. Section 4.4 studies how perturbations affect the

convergence of gradient steps, which is particularly relevant in FL applications

that involve unreliable communication or partial data access.

When optimization problems include explicit constraints on the model

parameters, projected gradient descent (projected GD) presented in Section

4.5 provides a principled solution. Section 4.6 then extends gradient-based

methods to non-parametric models, using proximal operators and test datasets

to generalize the notion of a gradient step. Finally, Section 4.7 interprets

gradient-based methods as a special case of fixed-point iterations. This

perspective allows for a unified understanding of FL algorithms as convergent

64

processes driven by contraction operators.

4.1 Gradient Descent

Gradient-based methods are iterative algorithms for finding the minimum of

a differentiable objective function f(w) of a vector-valued argument w. One

example of such an optimization problem is the ERM instance (2). Unless

stated otherwise, we consider an objective function of the form:

f(w) := wTQw + qTw. (76)

Although restricting our discussion to objective functions of the form (76)

may seem limiting, this formulation allows for a straightforward analysis and

generalization to larger classes of differentiable functions. Moreover, we can

use (76) also as an approximation for broader families of objective functions.

Note that (76) defines an entire family of convex quadratic functions f(w).

Each member of this family is specified by a psd matrix Q ∈ Rd×d and a

vector q ∈ Rd. We have already encountered some ML and FL methods

that minimize an objective function of the form (76): Linear regression (2)

and ridge regression (24) in Chapter 2 as well as GTVMin (51) for local

linear models in Chapter 3. Moreover, (76) is a useful approximation for the

objective functions arising in other ML methods [49–51].

Given a current choice of model parameters w(k), we want to update them

towards a minimum of (76). To this end, we use the gradient ∇f
(
w(k)

)
to

locally approximate f(w) (see Figure 4.1). The gradient ∇f
(
w(k)

)
indicates

the direction in which the function f(w) maximally increases. Therefore, it

65

seems reasonable to update w(k) in the opposite direction of ∇f
(
w(k)

)
,

w(k+1) := w(k) − η∇f
(
w(k)

)
(76)
= w(k) − η

(
2Qw(k) + q

)
. (77)

The gradient step (77) involves the positive factor η > 0 which we refer to

as step size or learning rate. Algorithm 2 summarizes the most basic variant

of gradient-based methods, which simply iterates (77) until a predefined

stopping criterion is met.

f(w)

f
(
w(k)

)
+
(
w−w(k)

)T∇f
(
w(k)

)
f
(
w(k)

)n

Fig. 4.1. We can approximate a differentiable function f(w) locally around

a point w(k) ∈ Rd using the linear function f
(
w(k)

)
+
(
w−w(k)

)T∇f
(
w(k)

)
.

Geometrically, we approximate the graph of f(w) by a hyperplane with

normal vector n = (∇f
(
w(k)

)
,−1)T ∈ Rd+1 of this approximating hyperplane

is determined by the gradient ∇f
(
w(k)

)
[2].

The usefulness of gradient-based methods crucially depends on the com-

putational complexity of evaluating the gradient ∇f(w). Modern software

libraries for automatic differentiation enable the efficient evaluation of the

gradients arising in widely-used ERM-based methods [52].

Besides the actual computation of the gradient, it might already be

challenging to gather the required data points which define the objective

66

function f(w) (e.g., being the average loss over a large training set). Indeed,

the matrix Q and vector q in (76) are constructed from the features and

labels of data points in the training set. For example, the gradient of the

objective function in ridge regression (24) is

∇f(w) = −(2/m)
m∑
r=1

x(r)
(
y(r) −wTx(r)

)
+ 2αw.

Evaluating this gradient requires roughly d×m arithmetic operations such

as adding and multiplying numbers.

Algorithm 2 A blueprint for gradient-based methods
Input: some objective function f(w) (e.g., the average loss of a hypothesis

h(w) on a training set); learning rate η > 0; some stopping criterion.

Initialize: set w(0) :=0; set iteration counter k :=0

1: repeat

2: k := k+1 (increase iteration counter)

3: w(k) := w(k−1) − η∇f
(
w(k−1)) (do a gradient step (77))

4: until stopping criterion is met

Output: learned model parameters ŵ := w(k) (hopefully f
(
ŵ
)

≈

minw f(w))

Like most other gradient-based methods, Algorithm 2, involves two hyper-

parameters: (i) the learning rate η used for the gradient step and (ii) a

stopping criterion to decide when to stop repeating the gradient step. We

next discuss how to choose these hyper-parameters.

Note that we can apply Algorithm 2 to find the minimum of any differen-

tiable objective function f(w). Indeed, Algorithm 2 only needs to be able

67

to access the gradient ∇f
(
w(k−1)). In particular, we an apply Algorithm 2

to objective functions that do not belong to the family of convex quadratic

functions (76).

4.2 How to Choose the Learning Rate

The learning rate must be chosen carefully: if it is too large, the gradient

step may overshoot and diverge from the solution of (76); if it is too small,

each step makes only negligible progress. Note that practical FL systems can

only afford to compute a finite number gradient steps. Therefore, we must

ensure that each gradient step makes a sufficiently large progress towards the

optimum of the objective function. Figure 4.2 illustrates both extremes.

f(w(k))
f(w(k+1))

f(w(k+2))(77)
(77)

(a)

f(w(k))
f(w(k+1)) f(w(k+2))

(b)

Fig. 4.2. Effect of inadequate learning rates η in the gradient step (77). (a)

If η is too large, the gradient steps might “overshoot” such that the iterates

w(k) might diverge from the optimum, i.e., f(w(k+1)) > f(w(k))! (b) If η is

too small, the gradient steps make very little progress towards the optimum

or even fail to reach the optimum at all.

One approach to choosing the learning rate is to start with some initial

value (first guess) and monitor the decrease in the objective function. If

68

this decrease does not agree with the decrease predicted by the (local linear

approximation using the) gradient, we decrease the learning rate by a constant

factor. After we decrease the learning rate, we re-consider the decrease in the

objective function. We repeat this procedure until a sufficient decrease in the

objective function is achieved [53, Sec 6.1].

Alternatively, we can use a prescribed sequence (schedule) ηk, for k =

1, 2, . . . , of learning rates that vary across successive gradient steps [54].

For example, we could require the learning rate ηk to satisfy the following

conditions [53, Sec. 6.1], [55]

lim
k→∞

ηk = 0,
∞∑
k=1

ηk = ∞ , and
∞∑
k=1

η2k < ∞. (78)

Running the gradient step (77) with a learning rate schedule ηk that satisfies

(78) ensures convergence to a minimum of f(w) if

• the iterates
∥∥w(k)

∥∥
2

are bounded, i.e., supk=1,...

∥∥w(k)
∥∥
2

is finite, and

• the gradients
∥∥∇f

(
w(k)

)∥∥
2
, for k = 1, 2, . . ., are also bounded.

A detailed convergence proof can be found in [53, Sec. 3].

It is instructive to discuss the meanings of the individual conditions in (78).

The first condition (78) requires that the learning rate eventually become

sufficiently small to avoid overshooting. The third condition (78) ensures that

this required decay of the learning rate does not take “forever”. Note that the

first and third condition in (78) could be satisfied by the trivial learning rate

schedule ηk = 0 which is clearly not useful as the gradient step has no effect.

The trivial schedule ηk = 0 is ruled out by the middle condition of (78).

This middle condition ensures that the learning rate ηk is large enough such

69

that the gradient steps make sufficient progress towards a minimizer of the

objective function.

We emphasize that the conditions in (78) are independent of any properties

of the matrix Q in (76). The matrix Q is determined by data points (see,

e.g., (2)), whose statistical properties can typically be controlled only to a

limited extent, such as through data normalization.

4.3 When to Stop?

For the stopping criterion, we may use a fixed number of iterations, kmax. This

hyper-parameter can be determined by constraints on computational resources.

We can optimize the number of iterations also via meta-learning, i.e., trying

to predict the optimal kmax based on key characteristics (or features) of the

objective function [56].

Another stopping criterion can be obtained by monitoring the decrease in

the objective function f
(
w(k)

)
. Specifically, we stop repeating the gradient

step (77) when
∣∣f(w(k)

)
− f

(
w(k+1)

)∣∣ ≤ ε(tol) for a given tolerance ε(tol). As

before, we can optimize the tolerance level ε(tol) via meta-learning techniques

[56].

For an objective function of the form (76), we can use information about

the psd matrix Q to construct a stopping criterion.14 Indeed, the choice of the
14For linear regression (6), the matrix Q is determined by the features of the data

points in the training set. We can influence the properties of Q to some extent by

feature transformation methods. One important example of such a transformation is the

normalization of features.

70

learning rate η and the stopping criterion can be guided by the eigenvalues

0 ≤ λ1(Q) ≤ . . . ≤ λd(Q).

Even if we do not know these eigenvalues precisely, we might know (or be

able to ensure via feature learning) some upper and lower bounds,

0 ≤ L ≤ λ1(Q) ≤ . . . ≤ λd(Q) ≤ U. (79)

In what follows, we assume that Q is invertible and that we know some

positive lower bound L > 0 on its eigenvalues (see (79)). The objective

function (76) has then a unique solution ŵ. A gradient step (77) reduces the

distance
∥∥w(k) − ŵ

∥∥
2

to ŵ by a constant factor [53, Ch. 6],∥∥w(k+1) − ŵ
∥∥
2
≤ κ(ηk) (Q)

∥∥w(k) − ŵ
∥∥
2
. (80)

Here, we used the contraction factor

κ(η)(Q) := max
{
|1− η2λ1|, |1− η2λd|

}
. (81)

The contraction factor depends on the learning rate η which is a hyper-

parameter of gradient-based methods that we can control. However, the

contraction factor also depends on the eigenvalues of the matrix Q in (76).

In ML and FL applications, this matrix typically depends on data and can be

controlled only to some extent, e.g., using feature transformation [23, Ch. 5].

To ensure κ(η)(Q) < 1, we require a positive learning rate satisfying ηk < 1/U .

Consider the gradient step (77) with fixed learning rate η and a contraction

factor κ(η)(Q) < 1 (see (81)). We can then ensure an optimization error∥∥w(k) − ŵ
∥∥
2
≤ ε (see (80)) if the number k of gradient steps satisfies

k ≥
⌈
log

(∥∥w(0) − ŵ
∥∥
2
/ε
)

log
(
1/κ(η)(Q)

) ⌉
︸ ︷︷ ︸

=:k(ε)

. (82)

71

η

1

1/(2λd)

|1−η2λ1|

|1−η2λd|

κ∗(Q)= (λd/λ1)−1
(λd/λ1)+1

η∗= 1
λ1+λd

1
λd

κ(η)(Q)

Fig. 4.3. The contraction factor κ(η)(Q) (81), used in the upper bound (80),

as a function of the learning rate η. Note that κ(η)(Q) also depends on the

eigenvalues of the matrix Q in (76).

According to (80), smaller values of the contraction factor κ(η)(Q) guar-

antee a faster convergence of (77) towards the solution of (76). Figure 4.3

illustrates the dependence of κ(η)(Q) on the learning rate η. Thus, choosing

a small η (close to 0) will typically result in a larger κ(η)(Q) and, in turn,

require more iterations to ensure optimization error level ε(tol) via (80).

We can minimize this contraction factor by choosing the learning rate (see

Figure 4.3)

η(∗) :=
1

λ1 + λd

. (83)

[Note that evaluating (83) requires to know the extremal eigenvalues λ1, λd

72

of Q.] Inserting the optimal learning rate (83) into (80),

∥∥w(k+1) − ŵ
∥∥
2
≤ (λd/λ1)− 1

(λd/λ1) + 1︸ ︷︷ ︸
=:κ∗(Q)

∥∥w(k) − ŵ
∥∥
2
. (84)

Carefully note that the formula (84) is valid only if the matrix Q in (76) is

invertible, i.e., if λ1 > 0. If the matrix Q is singular (λ1 = 0), the convergence

of (77) towards a solution of (76) is much slower than the decrease of the

bound (84). However, we can still ensure the convergence of gradient steps

w(k) by using a fixed learning rate ηk = η that satisfies [57, Thm. 2.1.14]

0 < η < 1/λd(Q). (85)

It is interesting to note that for linear regression, the matrix Q depends only

on the features x(r) of the data points in the training set (see (15)) but not

on their labels y(r). Thus, the convergence of gradient steps is only affected

by the features, whereas the labels are irrelevant. The same is true for ridge

regression and GTVMin (using local linear models).

Note that both, the optimal learning rate (83) and the optimal contraction

factor

κ∗(Q) :=
(λd/λ1)− 1

(λd/λ1) + 1
(86)

depend on the eigenvalues of the matrix Q in (76).

According to (84), the ideal case is when all eigenvalues are identical which

leads, in turn, to a contraction factor κ∗(Q) = 0. Here, a single gradient step

arrives at the unique solution of (76).

In general, we do not have full control over the matrix Q and its eigenvalues.

For example, the matrix Q arising in linear regression (6) is determined by

73

the features of data points in the training set. These features might be

obtained from sensing devices and therefore beyond our control. However,

some applications might allow for some design freedom in the choice of feature

vectors. We might also use feature transformations that nudge the resulting

Q in (6) more towards a scaled identity matrix.

4.4 Perturbed Gradient Step

Consider the gradient step (77) used to find a minimum of (76). We again

assume that the matrix Q in (76) is invertible (λ1(Q) > 0) and, in turn, (76)

has a unique solution ŵ.

In some applications, it is challenging to evaluate the gradient ∇f(w) =

2Qw+ q of (76) exactly. For example, the evaluation could require to gather

data points from distributed storage locations. These storage locations can

become unavailable during the computation of ∇f(w) due to software or

hardware failures (e.g., limited connectivity). Another source for imperfections

can be stochastic approximation techniques where exact computations are

replaced by noisy approximations that require less resources.15

We can model imperfections during the computation of (77) as the per-

turbed gradient step

w(k+1) := w(k) − η∇f
(
w(k)

)
+ ε(k)

(76)
= w(k) − η

(
2Qw(k) + q

)
+ ε(k), for k = 0, 1, (87)

We can use the contraction factor κ := κ(η) (Q) (81) to upper bound the
15A prime example for such a stochastic approximation is stochastic gradient descent

(SGD) which we discuss in Section 5.3.

74

deviation between w(k) and the optimum ŵ as (see (80))

∥∥w(k)−ŵ
∥∥
2
≤ κk

∥∥w(0)−ŵ
∥∥
2
+

k∑
k′=1

κk′
∥∥∥ε(k−k′)

∥∥∥
2
. (88)

This bound applies for any number of iterations k = 1, 2, . . . of the perturbed

gradient step (87).

The perturbed gradient step (87) could also be used as a tool to analyze

the (exact) gradient step for an objective function f̃(w) which does not belong

to the family (76) of convex quadratic functions. Indeed, we can write the

gradient step for minimizing f̃(w) as

w(k+1) := w(k) − η∇f̃(w)

= w(k) − η∇f(w) + η
(
∇f(w)−∇f̃(w)

)︸ ︷︷ ︸
:=ε(k)

.

The last identity is valid for any choice of surrogate function f(w). In

particular, we can choose f(w) as a convex quadratic function (76) that

approximates f̃(w). Note that the perturbation term ε(k) is scaled by the

learning rate η.

4.5 Handling Constraints - Projected Gradient Descent

Many important ML and FL methods amount to the minimization of an

objective function of the form (76). The optimization variable w in (76)

represents some model parameters.

Sometimes we might require the parameters w to belong to a subset

S ⊂ Rd. One example is regularization via model pruning (see Chapter 2).

Another example are FL methods that learn identical local model parameters

75

w(i) at all nodes i ∈ V of an FL network. This can be implemented by

requiring the stacked local model parameters w =
(
w(1), . . . ,w(n)

)T to belong

to the subset

S =

{(
w(1), . . . ,w(n)

)T
: w(1) = . . . = w(n)

}
.

Let us now show how to adapt the gradient step (77) to solve the con-

strained problem

f ∗ = min
w∈S

wTQw + qTw. (89)

We assume that the constraint set S ⊆ Rd is such that we can efficiently

compute the projection

PS
(
w
)
= argmin

w′∈S
∥w −w′∥2 for any w ∈ Rd. (90)

A suitable modification of the gradient step (77) to solve the constrained

variant (89) is [53]

w(k+1) := PS
(
w(k) − η∇f

(
w(k)

))
(76)
= PS

(
w(k) − η

(
2Qw(k) + q

))
. (91)

The projected GD step (91) consists of:

1. computing an ordinary gradient step w(k) 7→ w(k) − η∇f
(
w(k)

)
and

then

2. projecting the result back to the constraint set S.

Note that we re-obtain the basic gradient step (77) from the projected gradient

step (91) for the trivial constraint set S = Rd.

76

f(w)

w(k)
(77)

w(k)−η∇f
(
w(k)

) PS
(
·
)
w(k+1)

S

Fig. 4.4. Projected GD augments a basic gradient step with a projection back

onto the constraint set S.

The approaches for choosing the learning rate η and stopping criterion

for basic gradient step (77) explained in Sections 4.2 and 4.3 work also for

the projected gradient step (91). In particular, the convergence speed of the

projected gradient step is also characterized by (80) [53, Ch. 6]. This follows

from the fact that the concatenation of a contraction (such as the gradient

step (77) for sufficiently small η) and a projection (such as PS
(
·
)
) results

again in a contraction with the same contraction factor.

Thus, the convergence speed of projected GD, in terms of number of

iterations required to ensure a given level of optimization error, is essentially

the same as that of basic GD. However, the bound (80) is only telling about

the number of projected gradient steps (91) required to achieve a guaranteed

level of sub-optimality
∣∣f(w(k)

)
− f ∗

∣∣. The iteration (91) of projected GD

might require significantly more computation than the basic gradient step, as

it requires to compute the projection (90).

77

4.6 Extended Gradient Methods for Federated Optimiza-

tion

The gradient-based methods discussed so far can be used to learn a hypothesis

from a parametric model. Let us now sketch one possible generalization of

the gradient step (77) for a model H without a parametrization.

We start with rewriting the gradient step (77) as the optimization

w(k+1)=argmin
w∈Rd

(1/(2η))∥∥w−w(k)
∥∥2

2
+f

(
w(k)

)
+
(
w−w(k)

)T∇f
(
w(k)

)︸ ︷︷ ︸
≈f(w)

 .

(92)

The objective function in (92) includes the first-order approximation

f(w) ≈ f
(
w(k)

)
+
(
w −w(k)

)T∇f
(
w(k)

)
of the function f(w) around the location w = w(k) (see Figure 4.1).

Let us modify (92) by using f(w) itself (instead of an approximation),

w(k+1) = argmin
w∈Rd

[
f(w)+(1/(2η))

∥∥w −w(k)
∥∥2

2

]
. (93)

Like the gradient step, also (93) maps a given vector w(k) to an updated vector

w(k+1). Note that (93) is nothing but the proximal operator of the function

f(w) [39]. Similar to the role of the gradient step as the main building block

of gradient-based methods, the proximal operator (93) is the main building

block of proximal algorithms [39].

To obtain a version of (93) for a non-parametric model, we need to be able

to evaluate its objective function directly in terms of a hypothesis h instead

of its parameters w. The objective function (93) consists of two components.

78

The first component f(·), which is the function we want to minimize, is

obtained from a training error incurred by a hypothesis, which might be

parametric h(w). Thus, we can evaluate the function f(h) by computing the

training error for a given hypothesis.

The second component of the objective function in (93) uses
∥∥w −w(k)

∥∥2

2

to measure the difference between the hypothesis maps h(w) and h(w(k)).

Another measure for the difference between two hypothesis maps can be

obtained by using some test dataset D′ =
{
x(1), . . . ,x(m′)

}
: The average

squared difference between their predictions,

(1/m′)
m′∑
r=1

(
h
(
x(r)

)
− h(k)

(
x(r)

))2

, (94)

is a measure for the difference between h and h(k). Note that (94) only

requires the predictions delivered by the hypothesis maps h, h(k) on D′ - no

other information is needed about these maps.

It is interesting to note that (94) coincides with
∥∥w −w(k)

∥∥2

2
for the linear

model h(w)(x) := wTx and a specific construction of the dataset D′. This

construction uses the realizations x(1),x(2), . . . of i.i.d. RVs with a common

79

probability distribution x ∼ N (0, I). Indeed, by the law of large numbers

lim
m′→∞

(1/m′)
m′∑
r=1

(
h(w)

(
x(r)

)
− h(w(k))

(
x(r)

))2

= lim
m′→∞

(1/m′)
m′∑
r=1

((
w −w(k)

)T
x(r)

)2

= lim
m′→∞

(1/m′)
m′∑
r=1

(
w −w(k)

)T
x(r)

(
x(r)

)T (
w −w(k)

)
=

(
w −w(k)

)T [
lim

m′→∞
(1/m′)

m′∑
r=1

x(r)
(
x(r)

)T]
︸ ︷︷ ︸

=I

(
w −w(k)

)

=
∥∥w −w(k)

∥∥2

2
. (95)

Finally, we arrive at a generalized gradient step for the training of a

non-parametric model H by replacing
∥∥w −w(k)

∥∥2

2
in (93) with (94). In

other words,

h(k+1) = argmin
h∈H

[
(1/(2ηm′))

m′∑
r=1

(
h
(
x(r)

)
− h(k)

(
x(r)

))2

+ f(h)

]
. (96)

We can turn gradient-based methods for the training of parametric models

into corresponding training methods for non-parametric models by replacing

the gradient step with the update (96). For example, we obtain Algorithm 3

from Algorithm 2 by modifying step 3 suitably.

80

Algorithm 3 A blueprint for generalized gradient-based methods
Input: some objective function f : H → R (e.g., the average loss of a

hypothesis h ∈ H on a training set); learning rate η > 0; some stopping

criterion; test dataset D′ = {x(1), . . . ,x(m′)}

Initialize: set h(0) :=0; set iteration counter k :=0

1: repeat

2: k :=k+1 (increase iteration counter)

3: do a generalized gradient step (96),

h(k)=argmin
h∈H

[
(1/(2ηm′))

m′∑
r=1

(
h
(
x(r)

)
− h(k−1)

(
x(r)

))2

+ f(h)

]
4: until stopping criterion is met

Output: learned hypothesis ĥ := h(k) (hopefully f
(
ĥ
)
≈ minh∈H f(h))

4.7 Gradient Methods as Fixed-Point Iterations

The iterative optimization methods discussed in the previous sections are all

special cases of a fixed-point iteration,

w(k) = Fw(k−1), for k = 1, 2, (97)

Different optimization methods use different choices for the operator F

whose fixed points are solutions of the underlying optimization problem. For

example, the gradient step (77) is obtained from (97) with the operator

F (GD) : w 7→ w− η∇f(w). For a differentiable and convex objective function

f(w), every minimizer ŵ is a fixed point of F (GD).

The fixed-point iteration (97) will be the core computational step of every

FL algorithm discussed in Chapter 5. These algorithms use (97) with an

81

operator F determined by an instance of GTVMin. More precisely, any fixed

point of F must be an GTVMin-solution ŵ ∈ Rdn,

Fŵ = ŵ. (98)

Given an instance of GTVMin, there are many different operators F that

satisfy (98). We obtain different FL algorithms by using different choices for

F in (97). Clearly, we should use an operator F in (97) that reduces the

distance to a solution,∥∥w(k+1) − ŵ
∥∥
2︸ ︷︷ ︸

(97),(98)
= ∥Fw(k)−Fŵ∥

2

≤
∥∥w(k) − ŵ

∥∥
2
.

Thus, we require F to be at least non-expansive, i.e., the iteration (97) should

not result in worse model parameters that have a larger distance to the

GTVMin solution. Moreover, each iteration (97) should also make some

progress, i.e., reduce the distance from a GTVMin solution. This requirement

can be made precise using the notion of a contraction operator [58,59].

The operator F is a contraction operator if, for some κ ∈ [0, 1),

∥Fw−Fw′∥2 ≤ κ ∥w−w′∥2 holds for any w,w′ ∈ Rdn.

For a contraction operator F , the fixed-point iteration (97) generates a

sequence w(k) that converges to a GTVMin solution ŵ quite rapidly. In

particular [2, Theorem 9.23],∥∥w(k) − ŵ
∥∥
2
≤ κk

∥∥w(0) − ŵ
∥∥
2
.

Here,
∥∥w(0) − ŵ

∥∥
2

is the distance between the initialization w(0) and the

solution ŵ.

82

A well-known example of a fixed-point iteration (97) using a contraction

operator is GD (77) for a smooth and strongly convex objective function

f(w).16 In particular, (77) is obtained from (97) using F := G(η) with the

“gradient step operator”

G(η) : w 7→ w − η∇f(w). (99)

Note that the operator (99) is parametrized by the learning rate η.

It is instructive to study the operator G(η) for an objective function of the

form (76). Here,

G(η) : w 7→ w − η
(
2Qw + q

)︸ ︷︷ ︸
(76)
= ∇f(w)

. (100)

For η := 1/(2λmax(Q)), the operator G(η) is contractive with κ = 1 −

λmin(Q)/λmax(Q). Note that κ < 1 only when λmin(Q) > 0, i.e., only

when the matrix Q in (76) is invertible.

The gradient step operator (100) is not contractive for the objective

function (76) with a singular matrix Q (for which λmin = 0). However,

even then G(η) is still firmly non-expansive [22]. We refer to an operator

F : Rdn → Rdn as firmly non-expansive if

∥Fw −Fw′∥22 ≤
(
Fw −Fw′)T (w −w′), for any w,w′ ∈ Rdn.

It turns out that a fixed-point iteration (97) with a firmly non-expansive

operator F is guaranteed to converge to a fixed-point of F [58, Cor. 5.16]. Fig-

ure 4.5 depicts examples of a firmly non-expansive operator, a non-expansive
16The objective function in (76) is convex and smooth for any choice of psd matrix Q

and vector q. Moreover, it is strongly convex whenever Q is invertible.

83

w(k)

w(k+1) F (3)

F (1)

F (2)

1

−1

Fig. 4.5. Example of a non-expansive operator F (1), a firmly non-expansive

operator F (2) and a contractive operator F (3).

operator and a contraction operator. All these operators are defined on the

one-dimensional space R. Another example of a firmly non-expansive operator

is the proximal operator (93) of a convex function [39,58].

84

4.8 Exercises

4.1. Learning Rate Schedule. Consider the gradient step method applied

to a differentiable objective function f(w),

w(k+1) = w(k) − ηk∇f
(
w(k)

)
, for k = 1, 2,

where the learning rate schedule is defined as ηk :=
1
k
.

1. Verify that this learning rate schedule satisfies the standard conditions

in (78).

2. Construct a differentiable, convex function f(w) and an initialization

w(0) such that the gradient step iteration fails to converge to a minimizer

of f(w).

4.2. Learning Rate Schedule II. Consider the generic gradient step

w(k+1) = w(k) − ηk∇f
(
w(k)

)
, for k = 1, 2,

with a learning rate schedule of the form ηk := 1
kp

with some p > 0. For which

values of p > 0 does this schedule satisfy the conditions in (78)?

4.3. Online Gradient Descent. Linear regression methods learn model

parameters of a linear model with minimum risk E
{(

y−wTx
)2} where (x, y)

is a RV. In practice, we do not observe the RV (x, y) itself but a (realization

of a) sequence of i.i.d. samples
(
x(t), y(t)

)
, for t = 1, 2, Online GD is an

online learning method that updates the current model parameters w(t), after

observing
(
x(t), y(t)

)
,

w(t+1) := w(t)+2ηtx
(t)
(
y −

(
w(t)

)T
x(t)

)
at time t = 1, 2,

85

Starting with initialization w(1) := 0, we run online gradient descent (online

GD) for M time steps, resulting in the learned model parameters w(M+1).

Develop upper bounds on the risk E
{(

y −
(
w(M)

)T
x
)2} for two choices for

the learning rate schedule: ηt := 1/(t+ 5) or ηt := 1/
√
t+ 5.

4.4. Computing the Average - I. Consider an FL network with graph G

and its Laplacian matrix L(G). Each node carries a local dataset which consists

of a single measurement y(i) ∈ R. To compute their average (1/n)
∑n

i=1 y
(i)

we try an iterative method that, starting from the initialization u(0) :=(
y(1), . . . , y(n)

)T ∈ Rn, repeats the update

u(k+1) = u(k) − ηL(G)u(k) for k = 1, 2, (101)

Can you find a choice for η such that (101) becomes a fixed-point iteration

(97) with a contractive operator F . Given such a choice of η, how is the limit

limk→∞ u(k+1) related to the average (1/n)
∑n

i=1 y
(i)?

4.5. Computing the Average - II. Consider the FL network from Problem

4.4. Try to construct an instance of GTVMin for learning scalar local model

parameters w(i) which coincide, for each node i = 1, . . . , n with the average

(1/n)
∑n

i′=1 y
(i′). If you find such an instance of GTVMin, solve it using GD.

4.6. How to Quantize the Gradients? Any ML and FL application that

uses a digital computer to implement a gradient step (77) must quantize the

gradient ∇f(w) of the objective function f(w). The quantization process

introduces perturbations to the gradient step. Given a fixed total budget of

bits available for quantization, a key question arises: Should we allocate more

bits (reducing quantization noise) during the initial gradient steps or during

the final gradient steps in gradient-based methods?

Hint: See Section 4.4.

86

4.7. When is a Gradient Step (Firmly) Non-Expansive? Consider

the function f(w) = (1/2)w2 and the associated gradient step G(η) : w 7→

w − η∇f(w). Discuss the value ranges for the learning rate η, for which the

operator G(η) is non-expansive or even firmly non-expansive.

87

5 FL Algorithms

Chapter 3 introduced GTVMin as a flexible design principle for FL methods

that arise from different design choices for the local models and edge weights

of the FL network. The solutions of GTVMin are local model parameters that

strike a balance between the loss incurred on local datasets and the GTV.

This chapter applies the gradient-based methods from Chapter 4 to solve

GTVMin. We obtain FL algorithms by implementing these optimization

methods as message passing across the edges of the FL network. These

messages contain intermediate results of the computations carried out by FL

algorithms. The details of how this message passing is implemented physically

(e.g., via short-range wireless technology) are beyond the scope of this book.

Section 5.1 studies the gradient step for the GTVMin instance obtained

for training local linear models. In particular, we show how the convergence

rate of the gradient step can be characterized by the properties of the local

datasets and their FL network.

Section (5.2) spells out the gradient step from Section 5.1 in the form

of a message passing across the edges of the FL network. This results in

Algorithm 4 as a distributed FL method for parametric local models. Section

5.3 generalizes Algorithm 4 by replacing the exact gradient of local loss

functions with some approximation. One possible approximation is to use a

random subset (a batch) of a local dataset to estimate the gradient.

Section 5.4 discusses FL algorithms that train a single (global) model in

a distributed fashion. We show how the widely-used FL algorithms FedAvg

and FedProx are obtained from variations of projected GD, which we have

discussed in Section 4.5.

88

Section 5.6 generalizes the gradient step, which is the core computation

of FL algorithms for parametric models, to cope with non-parametric models.

The idea is to compare the predictions of the local models at two nodes i and

i′ on a common test-set. By comparing their predictions, we can measure

their variation across the edge {i, i′}.

Most of the algorithms discussed in this chapter operate in a synchronous

manner: All devices must complete their local model updates (e.g., gradient

steps) before exchanging updates simultaneously across the edges of the

FL network. However, synchronous operation can be impractical or even

infeasible for certain FL applications. Section 5.8 explores the design of FL

algorithms that support asynchronous operation. These algorithms allow

devices to update and communicate at different times within the FL system

5.1 Gradient Descent for GTVMin

Consider a collection of n local datasets represented by the nodes V =

{1, . . . , n} of an FL network G = (V , E). Each undirected edge {i, i′} ∈ E in

FL network G has a known edge weight Ai,i′ . We want to learn local model

parameters w(i) of a personalized linear model for each node i = 1, . . . , n. To

this end, we solve the GTVMin instance

{
ŵ(i)

}n

i=1
∈argmin

{w(i)}

∑
i∈V

local loss Li(w(i))︷ ︸︸ ︷
(1/mi)

∥∥y(i)−X(i)w(i)
∥∥2

2
+α

∑
{i,i′}∈E

Ai,i′

∥∥∥w(i)−w(i′)
∥∥∥2

2︸ ︷︷ ︸
=:f(w)

.

(102)

As discussed in Chapter 3, the objective function in (102) - viewed as a

89

function of the stacked local model parameters w := stack{w(i)}ni=1 - is a

quadratic function

wT



Q(1) · · · 0

...

0 · · · Q(n)

+αL(G) ⊗ I

w+
((
q(1)

)T
, . . . ,

(
q(n)

)T)
w (103)

with Q(i)=(1/mi)
(
X(i)

)T
X(i) and q(i) := (−2/mi)

(
X(i)

)T
y(i).

Note that (103) is a special case of the generic quadratic function (76) studied

in Chapter 4. Indeed, we obtain (103) from (76) for the choices

Q :=



Q(1) · · · 0

...

0 · · · Q(n)

+αL(G) ⊗ I

 , and q :=
((
q(1)

)T
, . . . ,

(
q(n)

)T)T
.

Therefore, the discussion and analysis of gradient-based methods from Chapter

4 also apply to GTVMin (102). In particular, we can use the gradient step

w(k+1) := w(k) − η∇f
(
w(k)

)
(103)
= w(k) − η

(
2Qw(k) + q

)
(104)

to iteratively compute an approximate solution ŵ to (102). This solution

consists of learned local model parameters ŵ(i), i.e., ŵ = stack{ŵ(i)}. Sec-

tion 5.2 formulates the gradient step (104) directly in terms of local model

parameters, resulting in a message passing over the FL network G.

According to the convergence analysis in Chapter 4, the convergence rate

of the iterations (104) is determined by the eigenvalues λj(Q) of the matrix

Q in (103). In general, these eigenvalues depend on the eigenvalues λj

(
Q(i)

)
90

as well as the eigenvalues λj

(
L(G)) of the Laplacian matrix L(G). In particular,

we will use the following two summary parameters

λmax := max
i=1,...,n

λd

(
Q(i)

)
, and λ̄min := λ1

(
(1/n)

n∑
i=1

Q(i)

)
. (105)

We first present an upper bound U (see (79)) on the eigenvalues of the

matrix Q in (103).

Proposition 5.1. The eigenvalues of Q in (103) are upper-bounded as

λj(Q) ≤ λmax + αλn

(
L(G))

≤ λmax + 2αd(G)max︸ ︷︷ ︸
=:U

, for j = 1, . . . , dn. (106)

Proof. See Section 5.10.1.

Note how the upper bound (106) involves properties of

• the local datasets, via λmax (see (105)),

• the FL network, via the maximum node degree d
(G)
max (see (35)), and

• the GTVMin parameter α.

The next result offers a lower bound on the eigenvalues λj(Q).

Proposition 5.2. Consider the matrix Q in (103). If λ2

(
L(G)) > 0 (i.e.,

the FL network in (102) is connected) and λ̄min > 0 (i.e., the average of the

matrices Q(i) is non-singular), then the matrix Q is invertible and its smallest

eigenvalue is lower bounded as

λ1(Q) ≥ 1

1 + ρ2
min{λ2

(
L(G))αρ2, λ̄min/2}. (107)

Here, we used the shorthand ρ := λ̄min/(4λmax) (see (105)).

91

Proof. See Section 5.10.2.

Proposition 5.1 and Proposition 5.2 provide some guidance for the design

choices of GTVMin. According to the convergence analysis of gradient-based

methods in Chapter 4, the eigenvalue λ1

(
Q
)

should be close to λdn

(
Q
)

to

ensure fast convergence. This suggests to favour FL networks G resulting in

a small ratio between the upper bound (106) and the lower bound (107). A

small ratio between these bounds, in turn, requires a large eigenvalue λ2

(
L(G))

and small node degree d
(G)
max.17

The bounds in (106) and (107) also depend on the GTVMin parameter

α. While these bounds might provide some guidance for the choice of α,

the exact dependence of the convergence speed of (104) on α is complicated.

For a fixed value of learning rate in (104), using larger values for α might

slow down the convergence of (104) for some collection of local datasets but

speed up the convergence of (104) for another collection of local datasets (see

Exercise 5.1).

5.2 Message Passing Implementation

We now discuss in more detail the implementation of gradient-based methods

to solve the GTVMin instances with a differentiable objective function f(w).

One such instance is GTVMin for local linear models (see (102)). The core

of gradient-based methods is the gradient step

w(k+1) := w(k) − η∇f
(
w(k)

)
. (108)

17The are constructions of graphs with a prescribed value of d(G)max such that λ2

(
L(G)) is

maximal [60,61].

92

The iterate w(k) contains local model parameters w(i,k),

w(k) =: stack
{
w(i,k)

}n

i=1
.

Inserting (102) into (108), we obtain the gradient step

w(i,k+1) :=w(i,k) − η

[
(2/mi)

(
X(i)

)T (
X(i)w(i,k)−y(i)

)︸ ︷︷ ︸
(I)

+ 2α
∑

i′∈N (i)

Ai,i′
(
w(i,k)−w(i′,k)

)
︸ ︷︷ ︸

(II)

]
. (109)

We slightly modify this gradient step by allowing for different learning rates

ηk,i at different nodes i and iterations k,

w(i,k+1) :=w(i,k) − ηk,i

[
(2/mi)

(
X(i)

)T (
X(i)w(i,k)−y(i)

)︸ ︷︷ ︸
(I)

+ 2α
∑

i′∈N (i)

Ai,i′
(
w(i,k)−w(i′,k)

)
︸ ︷︷ ︸

(II)

]
. (110)

The update (110) consists of two components, denoted (I) and (II). Com-

ponent (I) reflects the local loss function at node i while component (II)

couples node i with its neighbors i′ ∈ N (i). In particular, component (I) is the

gradient ∇Li

(
w(i,k)

)
of the local loss Li

(
w(i)

)
:= (1/mi)

∥∥y(i) −X(i)w(i)
∥∥2

2
.

Component (I) drives the updated local model parameters w(i,k+1) towards

the minimum of Li (·), i.e., having a small deviation between labels y(i,r) and

the predictions
(
w(i,k+1)

)T
x(i,r). Note that we can rewrite the component (I)

in (110), as

(2/mi)

mi∑
r=1

x(i,r)
(
y(i,r) −

(
x(i,r)

)T
w(i,k)

)
. (111)

93

The component (II) in (110) The purpose of component (II) in (110) is

to force the local model parameters to be similar across an edge {i, i′} with

large weight Ai,i′ . We control the relative importance of (II) and (I) using

the GTVMin parameter α: Choosing a large value for α puts more emphasis

on enforcing similar local model parameters across the edges. Using a smaller

α puts more emphasis on learning local model parameters delivering accurate

predictions (incurring a small loss) on the local dataset.

w(1,k)

w(2,k)

w(3,k)

A1,2

A1,3

Fig. 5.1. At the beginning of iteration k, node i = 1 collects the current local

model parameters w(2,k) and w(3,k) from its neighbors. Then, it computes the

gradient step (110) to obtain the new local model parameters w(1,k+1). These

updated parameters are then used in the next iteration for the local updates

at the neighbors i = 2, 3.

The execution of the gradient step (110) requires only local information

at node i. Indeed, the update (110) at node i depends only on its current

model parameters w(i,k), the local loss function Li (·), the neighbors’ model

parameters w(i′,k), for i′ ∈ N (i), and the corresponding edge weights Ai,i′

(see Figure 5.1). In particular, the update (110) does not depend on any

properties kor edge weights) of the FL network beyond the neighbors N (i).

We obtain Algorithm 4 by repeating the gradient step (110), simultaneously

for each node i ∈ V , until a stopping criterion is met. Algorithm 4 allows for

94

potentially different learning rates ηk,i at different nodes i and iterations k. It

Algorithm 4 FedGD for Local Linear Models
Input: FL network G; GTV parameter α; learning rate ηk,i;

local dataset D(i) =
{(

x(i,1), y(i,1)
)
; . . . ,

(
x(i,mi), y(i,mi)

)}
for each i; some

stopping criterion.

Output: linear model parameters ŵ(i) for each node i ∈ V

Initialize: k :=0; w(i,0) :=0

1: while stopping criterion is not satisfied do

2: for all nodes i ∈ V (simultaneously) do

3: share local model parameters w(i,k) with neighbors i′∈N (i)

4: update local model parameters via (110)

5: end for

6: increment iteration counter: k :=k+1

7: end while

8: ŵ(i) := w(i,k) for all nodes i ∈ V

is important to note that Algorithm 4 requires a synchronous (simultaneous)

execution of the updates (110) at all nodes i ∈ V [17, 18]. Loosely speaking,

all nodes i rely on a single global clock that maintains the current iteration

counter k [62].

At the beginning of iteration k, each node i ∈ V sends its current model

parameters w(i,k) to their neighbors i′∈N (i). Then, each node i ∈ V updates

their model parameters according to (110), resulting in the updated model

parameters w(i,k+1). As soon as these local updates are completed, the global

clock increments the counter k 7→ k + 1 and triggers the next iteration to

be executed by all nodes. Figure 5.2 illustrates the alternating execution of

95

i

i′

w(i,k)w(i′,k)

i

i′

compute w(i,k+1)

compute w(i′,k+1)

Ai,i′

i

i′

w(i,k+1)w(i′,k+1)

Fig. 5.2. Algorithm 4 alternates between message passing across the edges

of the FL network (left and right) and updates of local model parameters

(centre).

message passing and local updates of Algorithm 4.

The implementation of Algorithm 4 in real-world computational infras-

tructures might incur deviations from the exact synchronous execution of

(110) [63, Sec. 10]. This deviation can be modelled as a perturbation of

the gradient step (108) and therefore analyzed using the concepts of Section

4.4 on perturbed GD. Section 8.2 will also discuss the effect of imperfect

computation in the context of key requirements for trustworthy FL.

We close this section by generalizing Algorithm 4 which is limited to

FL networks using local linear models. This generalization, summarized

in Algorithm 5, can be used to train parametric local models H(i) with a

differentiable loss function Li

(
w(i)

)
, for i = 1, . . . , n.

96

Algorithm 5 FedGD for Parametric Local Models
Input: FL network G; GTV parameter α; learning rate ηk,i

local loss function Li

(
w(i)

)
for each i = 1, . . . , n; some stopping criterion.

Output: linear model parameters ŵ(i) for each node i ∈ V

Initialize: k :=0; w(i,0) :=0

1: while stopping criterion is not satisfied do

2: for all nodes i ∈ V (simultaneously) do

3: share local model parameters w(i,k) with neighbors i′∈N (i)

4: update local model parameters via

w(i,k+1) :=w(i,k) − ηk,i

[
∇Li

(
w(i,k)

)
+2α

∑
i′∈N (i)

Ai,i′
(
w(i,k)−w(i′,k)

)]
.

5: end for

6: increment iteration counter: k :=k+1

7: end while

8: ŵ(i) := w(i,k) for all nodes i ∈ V

97

5.3 FedSGD

Consider Algorithm 4 for training local linear models h(i)(x) = xTw(i) for

each node i = 1, . . . , n of an FL network. Note that step 4 of Algorithm 4

requires to compute the sum (111). It might be infeasible to compute this

sum exactly, e.g., when local datasets are generated by remote devices with

limited connectivity. It is then useful to approximate the sum by

(2/B)
∑
r∈B

x(i,r)
(
y(i,r) −

(
x(i,r)

)T
w(i,k)

)
︸ ︷︷ ︸

≈(111)

. (112)

The approximation (112) uses a subset (so-called batch)

B =
{(

x(r1), y(r1)
)
, . . . ,

(
x(rB), y(rB)

)}
of B randomly chosen data points from D(i). While (111) requires summing

over m data points, the approximation requires to sum over B (typically

B ≪ m) data points.

Inserting the approximation (112) into the gradient step (110) yields the

approximate gradient step

w(i,k+1) :=w(i,k) − ηk,i

[
(2/B)

∑
r∈B

x(i,r)

((
x(i,r)

)T
w(i,k)−y(i,r)

)
︸ ︷︷ ︸

≈(111)

+ 2α
∑

i′∈N (i)

Ai,i′
(
w(i,k)−w(i′,k)

)]
. (113)

We obtain Algorithm 6 from Algorithm 4 by replacing the gradient step

(110) with the approximation (113).

We close this section by generalizing Algorithm 6 which is limited FL net-

works using local linear models. This generalization, summarized in Algorithm

98

Algorithm 6 FedSGD for Local Linear Models
Input: FL network G; GTV parameter α; learning rate ηk,i;

local datasets D(i) =
{(

x(i,1), y(i,1)
)
, . . . ,

(
x(i,mi), y(i,mi)

)}
for each node i;

batch size B; some stopping criterion.

Output: linear model parameters ŵ(i) at each node i ∈ V

Initialize: k :=0; w(i,0) :=0

1: while stopping criterion is not satisfied do

2: for all nodes i ∈ V (simultaneously) do

3: share local model parameters w(i,k) with all neighbors i′ ∈ N (i)

4: draw fresh batch B(i) := {r1, . . . , rB}

5: update local model parameters via (113)

6: end for

7: increment iteration counter k :=k+1

8: end while

9: ŵ(i) := w(i,k) for all nodes i ∈ V

99

7, can be used to train parametric local models H(i) with a differentiable loss

function Li

(
w(i)

)
, for i = 1, . . . , n. Algorithm 7 does not require these local

loss function themselves, but only an oracle g(i)(·) for each node i = 1, . . . , n.

For a given vector w(i), the oracle at node i delivers an approximate gradient

(or estimate) g(i)(w(i)) ≈ ∇Li

(
w(i)

)
. The analysis of Algorithm 7 can be fa-

cilitated by a probabilistic model which interprets the oracle output g(i)(w(i))

as the realization of a RV. Under such a probabilistic model, we refer to an

oracle as unbiased if E
{
g(i)(w(i))

}
= ∇Li

(
w(i)

)
.

Algorithm 7 FedSGD for Parametric Local Models
Input: FL network G; GTV parameter α; learning rate ηk,i

gradient oracle g(i)
(
·
)

for each node i = 1, . . . , n; some stopping criterion.

Output: linear model parameters ŵ(i) for each node i ∈ V

Initialize: k :=0; w(i,0) :=0

1: while stopping criterion is not satisfied do

2: for all nodes i ∈ V (simultaneously) do

3: share local model parameters w(i,k) with neighbors i′∈N (i)

4: update local model parameters via

w(i,k+1) :=w(i,k) − ηk,i

[
g(i)

(
w(i,k)

)
+2α

∑
i′∈N (i)

Ai,i′
(
w(i,k)−w(i′,k)

)]
.

5: end for

6: increment iteration counter: k :=k+1

7: end while

8: ŵ(i) := w(i,k) for all nodes i ∈ V

100

5.4 FedAvg

Consider an FL method that learns model parameters ŵ ∈ Rd of a single

(global) linear model from a de-centralized collection of local datasets D(i),

i = 1, . . . , n. 18 How can we learn ŵ without exchanging local datasets, but

instead only exchanging updates for the model parameters?

One approach is to apply Algorithm 4 to GTVMin (102) with a sufficiently

large α. According to our analysis in Chapter 3 (specifically Proposition 3.1),

if α is sufficiently large, then the GTVMin solutions ŵ(i) are almost identical

across all nodes i ∈ V . We can interpret the local model parameters delivered

by GTVMin as a local copy of the global model parameters.

Note that the bound in Proposition 3.1 only applies if the FL network

(used in GTVMin) is connected. One example of a connected FL network is

the star as depicted in Figure 5.3. Here, we choose one node i = 1 as a centre

node that is connected by an edge with weight A1,i to the remaining nodes

i = 2, . . . , n. The star graph uses the minimum number of edges required to

connect all n nodes [64].

Instead of using GTVMin with a connected FL network and a large value

of α, we can also enforce identical local copies ŵ(i) via a constraint:

ŵ ∈ arg min
w∈S

∑
i∈V

(1/mi)
∥∥y(i) −X(i)w(i)

∥∥2

2

with S =
{
w = stack{w(i)}ni=1 : w

(i) = w(i′) for any i, i′ ∈ V
}
. (114)

Here, we use as constraint set the subspace S defined in (45). The projection

of a given collection of local model parameters w = stack{w(i)} on S is given
18This setting is a special case of horizonal federated learning (HFL) which we discuss in

Section 6.3.

101

D(i)

A1,i

Fig. 5.3. Star-shaped graph G(star) with a centre node i = 1 representing a

server that trains a (global) model which is shared with peripheral nodes.

These peripheral nodes represent clients generating local datasets. The

training process at the server is facilitated by receiving updates on the model

parameters from the clients.

by

PS
(
w
)
=

(
vT , . . . ,vT

)T with v := (1/n)
∑
i∈V

w(i).

We can solve (114) using projected GD from Chapter 4. The resulting

projected gradient step for solving (114) is

ŵ
(i)
k+1/2 :=w(i,k)−ηi,k(2/mi)

(
X(i)

)T (
X(i)w(i,k)−y(i)

)︸ ︷︷ ︸
(local gradient step)

(115)

w(i,k+1) := (1/n)
∑
i′∈V

ŵ
(i′)
k+1/2 (projection) . (116)

We can implement (116) conveniently in a server-client system with each node

i being a client:

• First, each node computes the update (115), i.e., a gradient step towards

a minimum of the local loss Li

(
w(i)

)
:=

∥∥y(i) −X(i)w(i)
∥∥2

2
.

102

• Second, each node i sends the result ŵ(i)
k of its local gradient step to a

server.

• Finally, after receiving the updates ŵ(i)
k from all nodes i ∈ V , the server

computes the projection step (116). This projection results in the new

local model parameters w(i,k+1) that are sent back to each client i.

The averaging step (116) might take much longer to execute than the

local update step (115). Indeed, (116) typically requires transmission of local

model parameters from every client i ∈ V to a server or central computing

unit. Thus, after the client i ∈ V has computed the local gradient step (115),

it must wait until the server (i) has collected the updates ŵ(i)
k from all clients

and (ii) sent back their average w(i,k+1) to i ∈ V .

Instead of using a single gradient step (115),19 and then being forced to

wait for receiving w(i,k+1) back from the server, a client can make better use

of its resources. For example, the device i could execute several local gradient

steps (115) to make more progress towards the optimum,

v(0) := ŵ
(i)
k

v(r) := v(r−1)−ηi,k(2/mi)
(
X(i)

)T (
X(i)v(r−1)−y(i)

)
, for r = 1, . . . , R

ŵ
(i)
k+1/2 := v(R). (117)

We obtain Algorithm 8 by iterating the combination of (117) with the

projection step (116).
19For a large local dataset, the local gradient step (115) can become computationally

too expensive and must be replaced by an approximation, e.g., using a stochastic gradient

approximation (112).

103

Algorithm 8 Server-based FL for linear models
The Server.

Input. Some stopping criterion; list of clients i = 1, . . . , n, number R of local

updates.

Output. Trained model parameters ŵ(global)

Initialize. k := 0; w(i,k) = 0 for all i = 1, . . . , n

1: while stopping criterion is not satisfied do

2: Update the global model parameters

ŵ(k) := (1/n)
n∑

i=1

w(i,k).

3: Send model parameters ŵ(k) (and k) to all clients. i=1, . . . , n

4: Gather update local model parameters w(i,k+1) from clients i=1, . . . , n.

5: Clock Tick. k := k + 1.

6: end while

The Client i ∈ {1, . . . , n}.

Input. Local dataset X(i),y(i), number of gradient steps R and learning rate

(schedule) ηi,k.

1: Receive the current model parameters ŵ(k) from the server.

2: Update the local model parameters by R gradient steps

v(0) := ŵ(global)

v(r) := v(r−1)−ηi,k(2/mi)
(
X(i)

)T (
X(i)v(r−1)−y(i)

)
, for r = 1, . . . , R

w(i,k+1) := v(R).

3: Send the new local model parameters w(i,k+1) back to server.

104

One of the most popular server-based FL algorithms, referred to as FedAvg

and summarized in Algorithm 9, is obtained by two modifications of Algorithm

8:

• replacing the updates in step 2 at the client in Algorithm 8 with

v(r) := v(r−1)−ηi,kg
(
v(r)

)
using the gradient approximation g(i)

(
v(r)

)
≈

∇Li

(
v(r)

)
,

• using a randomly selected subset C(k) of clients during each global

iteration k.

105

Algorithm 9 FedAvg [12]
The Server.

Input. List of clients i = 1, . . . , n, number R of local updates

Output. Trained model parameters ŵ(global)

Initialize. k := 0; ŵ(global) := 0 for all i = 1, . . . , n

1: while stopping criterion is not satisfied do

2: randomly select a subset C(k) of clients

3: send ŵ(global) to all clients i∈C(k)

4: receive updated model parameters w(i) from clients i∈C(k)

5: update global model parameters

ŵ(global) :=
(
1/
∣∣C(k)

∣∣) ∑
i∈C(k)

w(i).

6: increase iteration counter k :=k+1

7: end while

Client i ∈ {1, . . . , n}, with local loss function Li (·)

1: receive global model parameters ŵ(global) from server

2: update local model parameters by R approximate gradient steps

v(0) := ŵ(global)

v(r) := v(r−1)−ηi,k g
(i)
(
v(r−1))︸ ︷︷ ︸

≈∇Li(v(r−1))

, for r = 1, . . . , R

w(i) := v(R). (118)

3: return w(i) back to server

106

5.5 FedProx

A central challenge in FedAvg (Algorithm 9) is selecting an appropriate

number of local updates, R, in (118). In each iteration, all clients perform

exactly R approximate gradient steps. However, [65] argues that enforcing

a uniform number R across clients can degrade performance in certain FL

settings. To mitigate this, they propose an alternative to (118) for the local

update step. This alternative is given by

w(i) := argmin
v∈Rd

[
Li (v) + (1/η)

∥∥v − ŵ(global)
∥∥2

2

]
. (119)

We have already encountered an update of the form (119) in Section 4.6.

Indeed, (119) is the application of the proximal operator of Li (v) (see (93))

to the current model parameters. We obtain Algorithm 10 from Algorithm

9 by replacing the local update step (118) with (119). Empirical studies

have shown that Algorithm 10 outperforms FedAvg (Algorithm 9) for FL

applications with a high-level of heterogeneity among the computational

capabilities of devices i = 1, . . . , n and the statistical properties of their local

datasets D(i) [65].

As the notation in (119) indicates, the parameter η plays a role similar

to the learning rate of a gradient step (77). It controls the size of the

neighbourhood of w(i,k) over which (119) optimizes the local loss function

Li (·). Choosing a small η forces the update (119) to not move too far from

the current model parameters w(i,k).

The core computation (120) of FedProx Algorithm 10 can be interpreted

as form of regularization. Indeed, we obtain (120) from (22) by

• replacing the average squared error loss with the local loss function

107

Algorithm 10 FedProx [65]
The Server.

Input. List of clients i = 1, . . . , n

Output. Trained model parameters ŵ(global)

Initialize. k := 0; ŵ(global) := 0 for all i = 1, . . . , n

1: while stopping criterion is not satisfied do

2: randomly select a subset C(k) of clients

3: send ŵ(global) to all clients i∈C(k)

4: receive updated model parameters w(i) from clients i∈C(k)

5: update global model parameters

ŵ(global) :=
(
1/
∣∣C(k)

∣∣) ∑
i∈C(k)

w(i).

6: increase iteration counter k :=k+1

7: end while

Client i ∈ {1, . . . , n}, with local loss function Li (·)

1: receive global model parameters ŵ(global) from server

2: update local model parameters by

w(i) := argmin
v∈Rd

[
Li (v) + (1/η)

∥∥v − ŵ(global)
∥∥2

2

]
(120)

3: return w(i) back to server

108

Li (v),

• using the regularizer

R
{
v
}
:=

∥∥v − ŵ(global)
∥∥2

2
, (121)

• and the regularization parameter α := 1/η.

Note that Algorithms 10 and 9 provide only an abstract description of

a practical FL system. The details of their actual implementation, such as

the synchronization between the server and all clients (see steps 4 and 3

in Algorithm 10) is beyond the scope of this book. Instead, we refer the

reader to relevant literature on the implementation of distributed computing

systems [18,66].

5.6 FedRelax

We now apply a simple block-coordinate minimization method [17] to solve

GTVMin (49). To this end, we rewrite (49) as

ŵ ∈ arg min
w∈Rdn

∑
i∈V

f (i) (w)︸ ︷︷ ︸
=:f (GTV)(w)

with f (i) (w) := Li

(
w(i)

)
+ (α/2)

∑
i′∈N (i)

Ai,i′

∥∥∥w(i) −w(i′)
∥∥∥2

2
,

and the stacked model parameters w =
(
w(1), . . . ,w(n)

)T
. (122)

According to (122), the objective function of (49) decomposes into components

f (i) (w), one for each node V of the FL network. Moreover, the local model

parameters w(i) influence the objective function only via the components

109

at the nodes i ∪ N (i). We exploit this structure of (122) to decouple the

optimization of the local model parameters
{
ŵ(i)

}
i∈V as described next.

Consider some local model parameters w(i,k), for i = 1, . . . , n, at time k.

We then update (in parallel) each w(i,k) by minimizing f (GTV)(·) along w(i)

with the other local model parameters w(i′) := w(i′,k) held fixed for all i′ ̸= i,

w(i,k+1) ∈ argmin
w(i)∈Rd

f (GTV)

(
w(1,k), . . . ,w(i−1,k),w(i),w(i+1,k), . . .

)
(122)
= argmin

w(i)∈Rd

f (i)
(
w(1,k), . . . ,w(i−1,k),w(i),w(i+1,k), . . .

)
(122)
= argmin

w(i)∈Rd

Li

(
w(i)

)
+ α

∑
i′∈N (i)

Ai,i′

∥∥∥w(i) −w(i′,k)
∥∥∥2

2
. (123)

The update rule in (123) can be viewed as a non-linear Jacobi method applied

to (122) [17, Sec. 3.2.4]. It also admits an interpretation as a form of block-

coordinate optimization [67]. By iterating this update sufficiently many times,

we arrive at Algorithm 11. There is an interesting connection between the

Algorithm 11 FedRelax for Parametric Models
Input: FL network G with local loss functions Li (·), GTV parameter α

Initialize: k :=0; w(i,0) :=0

1: while stopping criterion is not satisfied do

2: for all nodes i ∈ V in parallel do

3: compute w(i,k+1) via (123)

4: share w(i,k+1) with neighbors N (i)

5: end for

6: k :=k+1

7: end while

update (123) and the basic gradient steps used by FedGD and FedSGD (see

110

Algorithm 5 and 7). Indeed, we obtain step 4 in Algorithm 5 from (123) by

replacing the loss function Li

(
w(i)

)
with the approximation

Li

(
w(i,k)

)
+
(
∇Li

(
w(i,k)

))(
w(i) −w(i,k)

)
+ (1/(2η))

∥∥w(i) −w(i,k)
∥∥2

2
.

A Model-Agnostic Method. The applicability of Algorithm 11 is

limited to FL networks with parametric local models (such as linear regression

or ANNs with a common structure). We can generalize Algorithm 11 to

non-parametric local models by applying the non-linear Jacobi method to the

GTVMin variant (66). This results in the update

ĥ
(i)
k+1 ∈ argmin

h(i)∈H(i)

Li

(
h(i)

)
+ α

∑
i′∈N (i)

Ai,i′ d
(h(i),ĥ

(i′)
k)︸ ︷︷ ︸

see (64)

. (124)

We obtain Algorithm 12 as a model-agnostic variant of Algorithm 11 by

replacing the update (123) in its step 3 with the update (124).

Algorithm 12 is model-agnostic as it allows devices of an FL network to

train different types of local models. The only restriction for the local models

is that the update (124) can be computed efficiently. For some choices of

local models and loss function, the update (124) can be implemented by basic

data augmentation (see Exercise 5.3).

111

Algorithm 12 Model Agnostic FedRelax
Input: FL network with G, local models H(i), loss functions Li (·), GTV

parameter α, loss L (·, ·) used in (64).

Initialize: k :=0; ĥ(i)
0 :=0

1: while stopping criterion is not satisfied do

2: for all nodes i ∈ V in parallel do

3: compute ĥ
(i)
k+1 via (124)

4: end for

5: k :=k+1

6: end while

112

5.7 A Unified Formulation

The previous sections have presented some widely-used FL algorithms. These

algorithms are obtained by applying distributed optimization methods to

solve GTVMin. Despite their different formulations they share a common

underlying structure. In particular, they can all be expressed as synchronous

fixed-point iterations:

ĥ
(i)
k+1 = F (i)

(
ĥ
(1)
k , . . . , ĥ

(n)
k

)
, for i = 1, . . . , n. (125)

h(1), . . . , h(n)

h(i)

F (i)
(
h(1), . . . , h(n)

)

Fig. 5.4. A key computational step in many FL algorithms is the evaluation

of an operator F (i) at each node i = 1, . . . , n of the FL network.

Each operator F (i) : H(1) × . . . ×H(n) → H(i) represents a local update

rule at the i = 1, . . . , n (see Figure 5.4). Some algorithms use time-varying

update rules,

ĥ
(i)
k+1 = F (i)

(
ĥ
(1)
k , . . . , ĥ

(n)
k

)
. (126)

113

with operators F (i,k) that can vary across nodes i = 1, . . . , n and time instants

k = 1, 2, One example of (126) is used in Algorithm 5 for a time-varying

learning rate.

Clearly, any FL algorithm of the form 125 is fully specified by the operators

F (1), . . . ,F (n). This - rather trivial - observation implies that we can study

the behaviour of FL algorithms via analyzing the properties of the operators

F (i), for i = 1, . . . , n. In particular, the robustness of FL algorithms crucially

depends on the shape of F (i).

For parametric local models, we can re-formulate the fixed-point iteration

(125) directly in terms of the model parameters

w(i,k+1) = F (i)
(
w(1,k), . . . ,w(n,k)

)
, for k = 0, 1, . . . , (127)

with operators F (i) : Rnd → Rd, for i = 1, . . . , n. One example of (127) is the

update 123 used by FedRelax (see Algorithm 11).

114

5.8 Asynchronous FL Algorithms

The FL algorithms presented so far rely on synchronous coordination among

devices i = 1, . . . , n within an FL network [18, Ch. 6]. A new iteration is

only initiated once all devices have completed their local updates (125) and

communicated them to their neighbors [68, Sec. 10], [17, Sec. 1.4].

The implementation of synchronous FL algorithms can be difficult (or

impossible) in practice. As highlighted in Chapter 8, trustworthy FL systems

should tolerate unreliable or failing devices. Synchronous methods lack this

robustness—any device failure or dropout can cause the entire algorithm exe-

cution to stall. Moreover, synchronous execution is inefficient in heterogeneous

FL systems. Devices often vary in computational power or communication

bandwidth, leading to the straggler problem: faster devices are forced to wait

idly for slower ones [69, 70]. Having devices to wait idly for slower devices

results in a waste of their computational resources.

To address the limitations of synchronous FL algorithms, we now show

how to build asynchronous variants of the FL algorithms discussed in Section

5.7. We focus here on parametric local models, each represented by their

own model parameters w(i). The basic idea is to let each device i = 1, . . . , n

execute the update (127) independently, using potentially out-dated updates

from its neighbors N (i).

An asynchronous FL algorithm consists of a sequence of update events,

which we index by k = 0, 1, 2, . . . (see Figure 5.5). During each event k, a

subset A(k) ⊆ V of devices performs updates:

w(i,k+1) = F (i)
(
w(1,ki,1), . . . ,w(n,ki,n)

)
. (128)

115

Here, ki,i′ ≤ k is event index of the latest available model parameters of device

i′ at device i.

i = 1

i = 2

k = 1 k = 2 k = 3 k = 4

(128)

(128)

(128)

(128)

(128) (128)

(128)

Fig. 5.5. The execution of an asynchronous FL algorithm consists of a sequence

of update events, indexed by k = 0, 1, 2, During each event k, the active

nodes i ∈ A(k) ⊆ V of an FL network update their local model parameters

w(i) by computing (128). Active nodes are depicted as filled circles.

The set of nodes performing the update (128) during event k is denoted

as the active set A(k) ⊆ V. It is convenient to summarize the resulting

asynchronous algorithm as

w(i,k+1) =

F (i)
(
w(1,ki,1), . . . ,w(n,ki,n)

)
for k ∈ T (i)

w(i,k) otherwise.
(129)

Here, we used the set

T (i) :=
{
k ∈ {0, 1, . . . , } : i ∈ A(k)

}
,

which consists, for each i = 1, . . . , n, of those clock ticks during which node i

is active. Note that (129) reduces to the synchronous algorithm (127) for the

extreme case when T (i) = 0, 1, 2, . . . , for all i = 1, . . . , n.

Like the synchronous algorithm (127), also the asynchronous variant 129

uses an iteration counter k. However, the practical meaning of k in the

116

asynchronous variant is fundamentally different: Instead of representing a

global clock tick (or wall-clock time), the counter k in (129) indexes some

update event during which at least one node is active and computes a local

update. We denote the set of active nodes (or devices) during event k by

A(k) ⊆ V . The inactive nodes i /∈ A(k) leave their current model parameters

unchanged, i.e., w(i,k+1) = w(i,k).

For each active node i ∈ A(k), the local update (129) uses potentially

outdated model parameters w(i′,ki,i′) from its neighbors i′ ∈ N (i). Indeed,

some of the neighbors might have not been in the active sets A(k−1),A(k−2), . . .

of the most recent iterations. In this case, the update (129) does not have

access to w(i′,k). Instead, we can only use w(i′,ki,i′) that has been produced

obtained during some previous iteration ki,i′ < k.

The update (128) involves an operator F (i) : Rdn → Rd that determines

the resulting FL algorithm. We can interpret (128) as an asynchronous variant

of the synchronous algorithm (127) obtained for the same F (i). For example,

an asynchronous variant of Algorithm 5 (with a fixed learning rate) can be

obtained for the choice

F (i)
(
w(1), . . . ,w(n)

)
= w(i)−η

(
∇Li

(
w(i)

)
+

∑
i′∈N (i)

2Ai,i′
(
w(i)−w(i′)

))
. (130)

Note that the choice (130) involves the local loss functions and the weighted

edges of an FL network.

The update (128), at an active node i ∈ A(k), involves potentially out-

dated local model parameters w(i′,ki,i′), with ki,i′ ≤ k, for i′ = 1, . . . , n. The

quantity ki,i′ represents the most recent update event during which node i′

has shared its updated local model parameters with node i. We can, in turn,

117

interpret the difference k − ki,i′ as a measure of the communication delay

between node i′ and node i.

Depending on the extent of the delays k − ki,i′ in the update (128), we

distinguish between [17]

• Totally asynchronous algorithms. These are algorithms of the

form (129) with unbounded delays k−ki,i′ , i.e., they can can become

arbitrarily large. Moreover, we require that no device stops updating,

i.e., the set T (i) is infinite for each i = 1, . . . , n.

• Partially asynchronous algorithms. These are algorithms of the

form (129) with bounded delays k−ki,i′ ≤B, with some fixed (but possibly

unknown) maximum delay B ∈ N. Moreover, each device updates at

least once during B consecutive clock ticks, i.e., T (i)∩{t, t+1, t+B−1} ≠

∅ for each t = 1, 2, . . . , and i = 1, . . . , n.

For some choices of F (i) in (128), a partially asynchronous algorithm can

converge for any value of B. However, there also choices of F (i), for which

a partially asynchronous algorithm will only converge if B is sufficiently

small [17, Ch. 7].

Convergence Guarantees. There is an elegant characterization of

the convergence of totally and partially asynchronous FL algorithms of the

form (129). This characterization applies whenever the operators F (i), for

i = 1, . . . , n, in (129) form a pseudo-contraction [71]

max
i=1,...,n

∥∥F (i)
(
w(1), . . . ,w(n)

)
−F (i)

(
ŵ(1), . . . , ŵ(n)

)∥∥≤κ · max
i=1,...,n

∥∥w(i)−ŵ(i)
∥∥ ,

(131)

with some contraction rate κ ∈ [0, 1) and some fixed-point ŵ(1), . . . , ŵ(n).

118

The operators F (i), for i = 1, . . . , n, underlying GTVMin-based algorithms

are determined by the design choices of the GTVMin building blocks. These

include the choices of local loss functions Li (·), for i = 1, . . . , n and edge

weights Ai,i′ , for {i, i′} ∈ E . Let us next discuss specific design choices which

yield operators that form a pseudo-contraction (131).

Consider the operator F (i) defined by the update (123) of FedRelax (see

Algorithm 11). If the local loss functions Li (·) are strongly convex,20 we can

decompose F (i) as

F (i) = proxLi(·),2αd(i)(·) ◦ T
(i). (132)

Here, we used the proximal operator as defined in (57) as well as the averaging-

neighbors-operator

T (i) : Rd × . . .× Rd︸ ︷︷ ︸
n times

→ Rd : w(1), . . . ,w(n) 7→ (1/d(i))
∑

i′∈N (i)

Ai,i′w
(i′).

It can be easily verified that the operators T (1), . . . , T (n) are non-expansive.

Moreover, by the basic properties of proximal operators (see, e.g., [72, Sec.

6]), the operators

proxL1(·),2αd(1)(·), . . . ,proxLn(·),2αd(n)(·)

also form a pseudo-contraction with κ = 1
1+(σ/(2αd(i)))

. Combining these facts

with (132) yields that the operators F (i), for i = 1, . . . , n, form a pseudo-

contraction with

κ =
1

1 + (σ/(2αd(i)))
. (133)

20Strictly speaking, we also need to require that the epigraph of each Li (·), for i = 1, . . . , n

is non-empty and closed [39].

119

For any FL algorithm (129) such that (131) is satisfied, the following

holds:

• A totally asynchronous algorithm of the form (129) converges to ŵ(1), . . . , ŵ(n)

[71, Thm. 23].

• In the partially asynchronous case with maximum delay B [71, Thm.

24],

max
i=1,...,n

∥∥w(i,k) − ŵ(i)
∥∥ ≤ κk/(2B+1) · max

i=1,...,n

∥∥w(i,0) − ŵ(i)
∥∥ . (134)

The bound (134) is quite intuitive: smaller contraction factors κ and smaller

delay bounds B lead to faster convergence of the algorithm (129). Figure 5.6

illustrates the factor κk/(2B+1) for different values of κ and maximum delay B.

The contraction factor κ of the operators F (i), for i = 1, . . . , n, arising

in GTVMin-based methods depends on the properties of local loss functions

and the connectivity of the FL network. According to (133), the operators

underlying FedRelax (see (123) and Algorithm 11), have a small contraction

factor if we use

• local loss functions that are strongly convex with large coefficient σ,

• a FL network with small weighted node degrees d(i), for i = 1, . . . , n.

Moreover, the contraction factor (133) decreases with decreasing GTVMin

parameter α. In the extreme case of α= 0 - where GTVMin decomposes

into fully independent local instances of ERM minw(i) Li (·) - the contraction

factor becomes κ=0. This makes sense as in this extreme case, there is no

information sharing required among the nodes of an FL network. Clearly, the

delays k−ki,i′ are then irrelevant for the performance of FL algorithms.

120

0 50 100

0

0.5

1

k

κ = 0.5

B = 100

B = 10

B = 1

0 50 100

k

κ = 0.99

B = 100

B = 10

B = 1

Fig. 5.6. Illustration of the factor κk/(2B+1) in the convergence bound (134)

for a partially asynchronous FL algorithm (129) using a pseudo-contraction

(see (131)).

121

5.9 Exercises

5.1. The convergence speed of gradient-based methods. Study the

convergence speed of (104) for two different collections of local datasets

assigned to the nodes of the FL network G with nodes V = {1, 2} and (unit

weight) edges E = {{1, 2}}. The first collection of local datasets results

in the local loss functions L1 (w) := (w + 5)2 and L2 (w) := 1000(w + 5)2.

The second collection of local datasets results in the local loss functions

L1 (w) := 1000(w+ 5)2 and L2 (w) := 1000(w− 5)2. Use a fixed learning rate

η := 0.5 · 10−3 for the iteration (104).

5.2. Convergence speed for homogeneous data. Study the convergence

speed of (104) when applied to GTVMin (102) with the following FL network

G: Each node i = 1, . . . , n carries a simple local model with single parameter

w(i) and the local loss function Li (w) :=
(
y(i) − x(i)w(i)

)2. The local dataset

consists of a constant x(i) := 1 and some y(i) ∈ R. The edges E are obtained

by connecting each node i with 4 other randomly chosen nodes. We learn

model parameters ŵ(i) by repeating (104), starting with the initializations

w(i,0) := y(i). Study the dependence of the convergence speed of (104) (towards

a solution of (102)) on the value of α in (102).

5.3. Implementing FedRelax via data augmentation. Consider the

application of Algorithm 12 to an FL network whose nodes carry regression

tasks. In particular, each device i = 1, . . . , n learns a hypothesis h(i) to predict

the numeric label y ∈ R of a data point with feature vector x. The usefulness

of a hypothesis is measured by the average squared error loss incurred on a

122

labelled local dataset

D(i) :=

{(
x(1), y(1)

)
, . . . ,

(
x(mi),x(mi)

)}
.

To compare the learned hypothesis maps at the nodes of an edge {i, i′}, we use

(64) with the squared error loss. Show that the update (124) is equivalent to

plain ERM (1) using a dataset D that is obtained by a specific augmentation

of D(i).

5.4. FedAvg as fixed-point iteration. Consider Algorithm 8 for training

the model parameters w(i) of local linear models for each i = 1, . . . , n of an

FL network. Each client uses a constant learning rate schedule ηi,k := ηi. Try

to find a collection of operators F (i) : Rnd → Rd, for each node i = 1, . . . , n,

such that Algorithm 8 is equivalent to the fixed-point iteration

w(i,k+1) = F (i)
(
w(1,k), . . . ,w(n,k)

)
.

5.5. Fixed-Points of a pseudo-contraction. Show that a pseudo-

contraction cannot have more than one fixed-point.

5.6. FedRelax update. Show that the update (123) of FedRelax for

parametric local models can be rewritten as

argmin
w(i)∈Rd

Li

(
w(i)

)
+ αd(i)

∥∥∥w(i) − ŵ(N (i))
∥∥∥2

2
.

Here, we used ŵ(N (i)) := (1/d(i))
∑

i′∈N (i) Ai,i′w
(i′,k) and the weighted node

degree d(i) =
∑

i′∈N (i) Ai,i′ (see (34)).

5.7. FedRelax vs. FedSGD Show that the update in step (4) of Algorithm

5 is obtained from the update (123) of FedRelax by replacing the local loss

function Li

(
w(i)

)
with a local approximation by a quadratic function, centred

around w(i,k).

123

5.8. FedSGD as fixed-point iteration. Show that Algorithm 6 can be

written as the distributed fixed-point iteration (127). Try to find an elegant

characterization of the resulting operators F (i), for i = 1, . . . , n.

5.9. FedRelax as fixed-point iteration. Show that Algorithm 12 can be

written as the distributed fixed-point iteration (125). Try to find an elegant

characterization of the resulting operators F (i), for i = 1, . . . , n. .

124

5.10 Proofs

5.10.1 Proof of Proposition 5.1

The first inequality in (106) follows from well-known results on the eigenvalues

of a sum of symmetric matrices (see, e.g., [3, Thm 8.1.5]). In particular,

λmax

(
Q
)
≤ max

{
max

i=1,...,n
λd

(
Q(i)

)
︸ ︷︷ ︸

(105)
= λmax

, λmax

(
αL(G) ⊗ I

)}
. (135)

The second inequality in (106) uses the following upper bound on the maxi-

mum eigenvalue λn

(
L(G)) of the Laplacian matrix:

λn

(
L(G)) (a)

= max
v∈S(n−1)

vTL(G)v

(37)
= max

v∈S(n−1)

∑
{i,i′}∈E

Ai,i′
(
vi − vi′

)2
(b)

≤ max
v∈S(n−1)

∑
{i,i′}∈E

2Ai,i′
(
v2i + v2i′

)
(c)
= max

v∈S(n−1)

∑
i∈V

2v2i
∑

i′∈N (i)

Ai,i′

(35)
≤ max

v∈S(n−1)

∑
i∈V

2v2i d
(G)
max

= 2d(G)max. (136)

Here, step (a) uses the CFW of eigenvalues [3, Thm. 8.1.2.] and step (b)

uses the inequality (u+v)2 ≤ 2(u2+v2) for any u, v ∈ R. For step (c) we use

the identity
∑

i∈V
∑

i′∈N (i) f(i, i′) =
∑

{i,i′}
(
f(i, i′) + f(i′, i)

)
(see Figure 5.7).

The bound (136) is essentially tight.21

21Consider an FL network being a chain (or path).

125

0
1

2

3

A1,22
(
w2

1
+ w2

2

)

A1,32
(
w2
1 + w2

3

)
Fig. 5.7. Illustration of step (c) in (136).

5.10.2 Proof of Proposition 5.2

Similar to the upper bound (136) we also start with the CFW for the eigen-

values of Q in (103). In particular,

λ1 = min
∥w∥22=1

wTQw. (137)

We next analyze the right-hand side of (137) by partitioning the constraint set

{w : ∥w∥22 = 1} of (137) into two complementary regimes for the optimization

variable w = stack{w(i)}. To define these two regimes, we use the orthogonal

decomposition

w = PSw︸ ︷︷ ︸
=:w

+PS⊥w︸ ︷︷ ︸
=:w̃

for subspace S in (45). (138)

Explicit expressions for the orthogonal components w, w̃ are given by (46)

and (47). In particular, the component w satisfies

w =
((
c
)T

, . . . ,
(
c
)T)T with c := avg

{
w(i)

}n

i=1
.

Note that

∥w∥22 = ∥w∥22 + ∥w̃∥22 . (139)

126

Regime I. This regime is obtained for ∥w̃∥2 ≥ ρ ∥w∥2. Since ∥w∥22 = 1,

and due to (139), we have

∥w̃∥22 ≥ ρ2/(1 + ρ2). (140)

This implies, in turn, via (44) that

wTQw
(103)
≥ αwT

(
L(G) ⊗ I

)
w

(37),(44)
≥ αλ2

(
L(G)) ∥w̃∥22

(140)
≥ αλ2

(
L(G))ρ2/(1 + ρ2). (141)

Regime II. This regime is obtained for ∥w̃∥2 < ρ ∥w∥2. Here we have

∥w∥22 > (1/ρ2)
(
1− ∥w∥22

)
and, in turn,

n ∥c∥22 = ∥w∥22 > 1/(1 + ρ2). (142)

We next develop the right-hand side of (137) according to

wTQw
(103)
≥

n∑
i=1

(
w(i)

)T
Q(i)w(i)

(138)
≥

n∑
i=1

(
c+ w̃(i)

)T
Q(i)

(
c+ w̃(i)

)
(142)
≥ ∥w∥22 λ1

(
(1/n)

n∑
i=1

Q(i)

)
︸ ︷︷ ︸

λ̄min

+
n∑

i=1

[
2
(
w̃(i)

)T
Q(i)c+

(
w̃(i)

)T
Q(i)w̃(i)︸ ︷︷ ︸

≥0

]

≥ ∥w∥22 λ̄min +
n∑

i=1

2
(
w̃(i)

)T
Q(i)c. (143)

To develop (143) further, we note that∣∣∣∣ n∑
i=1

2
(
w̃(i)

)T
Q(i)c

∣∣∣∣ (a)

≤ 2λmax ∥w̃∥2 ∥w∥2

∥w̃∥2<ρ∥w∥2
≤ 2λmaxρ ∥w∥22 . (144)

127

Here, step (a) follows from max∥y∥2=1,∥x∥2=1 y
TQx = λmax. Inserting (144)

into (143) for ρ = λ̄min/(4λmax),

wTQw ≥ ∥w∥22 λ̄min/2
(142)
≥ (1/(1 + ρ2))λ̄min/2 (145)

For each w with ∥w∥22 = 1, either (141) or (145) must hold.

128

6 Key Variants of Federated Learning

Chapter 3 discussed GTVMin as a main design principle for FL algorithms.

GTVMin learns local model parameters that optimally balance the individual

local loss with their variation across the edges of an FL network. Chapter

5 discussed how to obtain practical FL algorithms. These algorithms solve

GTVMin using distributed optimization methods, such as those from Chapter

4.

This chapter discusses important special cases (or “main flavors”) of

GTVMin obtained for specific construction of local datasets, choices of local

models, measures for their variation and the weighted edges of the FL network.

We next briefly summarize the resulting main flavors of FL discussed in the

following sections.

Section 6.1 discusses single-model FL that learns model parameters of

a single (global) model from local datasets. This single-model flavor can

be obtained from GTVMin using a connected FL network with large edge

weights or, equivalently, a sufficient large value for the GTVMin parameter.

Section 6.2 discusses how clustered federated learning (CFL) is obtained

from GTVMin over FL networks with a cluster structure. CFL exploits the

presence of clusters (subsets of local datasets) which can be approximated

using an i.i.d. assumption. GTVMin captures these clusters if they are

well-connected by many (large weight) edges of the FL network.

Section 6.3 discusses horizonal federated learning (HFL) which is obtained

from GTVMin over an FL network whose nodes carry different subsets of

a single underlying global dataset. Loosely speaking, HFL involves local

datasets characterized by the same set of features but obtained from different

129

data points from an underlying dataset.

Section 6.4 discusses vertical federated learning (VFL), which arises from

applying GTVMin to a FL network where each node holds data on the same

individuals but with different sets of features. A representative example

involves public institutions such as tax authorities, social insurance agencies,

and healthcare providers. While these organizations each collect distinct

types of information, they all refer to the same underlying population, e.g.,

individuals identified by a Finnish social security number.

Section 6.5 shows how personalized FL can be obtained from GTVMin by

using specific measures for the GTV of local model parameters. For example,

using deep ANNs as local models, we might only use the model parameters

corresponding to the first few input layers to define the GTV.

6.1 Single-Model FL

Some FL use cases require to train a single (global) model H from a decen-

tralized collection of local datasets D(i), i = 1, . . . , n [13, 73]. In what follows

we assume that the model H is parametrized by a vector w ∈ Rd. Figure

6.1 depicts a server-client architecture for an iterative FL algorithm that

generates a sequence of (global) model parameters w(k), k = 1,

After computing the new model parameters w(k+1), the server broadcasts

it to the devices i = 1, . . . , i and increments the clock k := k + 1. In the

next iteration, each device i uses the current global model parameters w(k)

to compute a local update w(i,k) based on its local dataset D(i). The precise

implementation of this local update step depends on the choice of the global

model H (trained by the server). One example of such a local update has

130

been discussed in Chapter 5 (see (119)).

server
global model parameters w(k) at time k

1

D(1)

2

D(2)

3

compute w(3,k) based on w(k)

and local dataset D(3)

w
(1,

k)

w
(2
,k
) w (3,k)

w
(k)

w
(k
)

w (k)

Fig. 6.1. Illustration of a server-based (centralized) FL system during iteration

k. The server begins by broadcasting the current global model parameters

w(k) to each device i ∈ V. Each device i then computes an update w(i,k)

based on its local dataset D(i) and the received model parameters w(k). These

local updates w(i,k) are sent back to the server, which aggregates them to

obtain the updated global model parameters w(k+1).

Chapter 5 already hinted at an alternative to the server-based system in

Figure 6.1. Indeed, we might learn local model parameters w(i) for each client

i using a distributed optimization of GTVMin. We can force the resulting

model parameters w(i) to be (approximately) identical by using a connected

FL network and a sufficiently large GTVMin parameter α.

To minimize the computational complexity of the resulting single-model

FL system, we prefer FL networks with a small number of edges such as the

star graph in Figure 5.3 [64]. However, to increase the robustness against

131

node/link failures we should use an FL network with more edges. This

redundancy helps to ensure that the FL network is connected even after

removing some of its edges [74].

Much like the server-based system from Figure 6.1, GTVMin-based meth-

ods using a star graph offers a single point of failure which is the server

in Figure 6.1 or the centre node in Figure 5.3. Chapter 8 will discuss the

robustness of GTVMin-based FL systems in slightly more detail.

6.2 Clustered FL

Single-model FL systems require the local datasets to be well approximated

as i.i.d. realizations from a common underlying probability distribution.

However, requiring homogeneous local datasets, generated from the same

probability distribution, might be overly restrictive. Indeed, the local datasets

might be heterogeneous and need to be modelled using different probability

distribution [16,34].

CFL relaxes the requirement of a common probability distribution under-

lying all local datasets. Instead, we approximate subsets of local datasets as

i.i.d. realizations from a common probability distribution. In other words,

CFL assumes that local datasets form clusters. Each cluster C ⊆ V has a

cluster-specific probability distribution p(C).

The idea of CFL is to pool the local datasets D(i) in the same cluster C

to obtain a training set to learn cluster-specific ŵ(C). Each node i ∈ C then

uses these learned model parameters ŵ(C). A main challenge in CFL is that

the cluster assignments of the local datasets are unknown in general.

To determine a cluster C, we can apply standard clustering techniques (such

132

as k-means or Gaussian mixture model (GMM)) to a vector representation of

the local datasets [23, Ch. 5]. These vector representations can be constructed

in various ways. One option is to use the model parameters ŵ of a parametric

ML model trained on D(i). Alternatively, we can represent each local dataset

D(i) using the gradient of its local loss function Li

(
w(i)

)
(see Section 7.2).

We can also implement CFL via GTVMin with a suitably chosen FL

network. In particular, the FL network should contain many edges (with

large weight) between nodes in the same cluster and few edges (with a small

weight) between nodes in different clusters. To fix ideas, consider the FL

network in Figure 6.2, which contains a cluster C = {1, 2, 3}.

C
w(1)

w(2)

w(3)

w(4)

w(5)

∂C

Fig. 6.2. The solution of GTVMin (49) are local model parameters that are

approximately identical for all nodes in a tight-knit cluster C.

Chapter 3 discussed how the eigenvalues of the Laplacian matrix can

be used to measure the connectivity of G. Similarly, we can measure the

connectivity of a cluster C via the eigenvalue λ2

(
L(C)) of the Laplacian matrix

L(C) of the induced sub-graph G(C):22

The larger λ2

(
L(C)), the better the connectivity among the nodes in C.

22The graph G(C) consists of the nodes in C and the edges {i, i′} ∈ E for i, i′ ∈ C.

133

While λ2

(
L(C)) describes the intrinsic connectivity of a cluster C, we also need

to characterize its connectivity with the other nodes in the FL network. To

this end, we use the cluster boundary

|∂C| :=
∑

{i,i′}∈∂C

Ai,i′ with ∂C :=
{
{i, i′} ∈ E : i ∈ C, i′ /∈ C

}
.

Note that for a single-node cluster C = {i}, the cluster boundary coincides

with the node degree, |∂C| = d(i) (see (34)).

Intuitively, GTVMin tends to deliver (approximately) identical model

parameters w(i) for nodes i ∈ C if λ2

(
L(C)) is large and the cluster boundary

|∂C| is small. The following result makes this intuition more precise for the

special case of GTVMin (102) for local linear models.

Proposition 6.1. Consider an FL network G which contains a cluster C of

local datasets with labels y(i) and feature matrix X(i) related via

y(i)=X(i)w(C)+ε(i), for all i ∈ C. (146)

We learn local model parameters ŵ(i) via solving GTVMin (102). If the cluster

is connected, the error component

w̃(i) := ŵ(i) − (1/|C|)
∑
i∈C

ŵ(i) (147)

is upper bounded as∑
i∈C

∥∥w̃(i)
∥∥2

2
≤ 1

αλ2

(
L(C)

)[∑
i∈C

1

mi

∥∥ε(i)∥∥2

2
+ α |∂C| 2

(∥∥w(C)∥∥2

2
+R2

)]
. (148)

Here, we used R := maxi′∈V\C
∥∥ŵ(i′)

∥∥
2
.

Proof. See Section 6.8.1.

134

The bound (148) depends on the cluster C (via the eigenvalue λ2

(
L(C))

and the boundary |∂C|) and the GTVMin parameter α. Using a larger C

typically results in a decreased eigenvalue λ2

(
L(C)).23 According to (148), we

should then increase α to maintain a small deviation w̃(i) of the learned local

model parameters from their cluster-wise average. Thus, increasing α in (49)

enforces its solutions to be approximately constant over increasingly larger

subsets (clusters) of nodes (see Figure 6.3).

For a connected FL network G and a sufficiently large α, the solution of

GTVMin consists of learned model parameters w(i) that are approximately

identical for all V = 1, . . . , n. The resulting approximation error is quantified

by Proposition 6.1 for the extreme case where the entire FL network forms a

single cluster, i.e., C = V. Trivially, the cluster boundary is then equal to 0

and the bound (148) specializes to (63).

We hasten to add that the bound (148) only applies for local datasets that

conform with the probabilistic model (146). In particular, it assumes that

all cluster nodes i ∈ C have identical model parameters w(C). Trivially, this

is no restriction if we allow for arbitrary error terms ε(i) in the probabilistic

model (148). However, as soon as we place additional assumptions on these

error terms (such as being realizations of i.i.d. Gaussian RVs) we should

verify their validity using principled statistical tests [32,75]. Finally, we might

replace
∥∥w(C)

∥∥2

2
in (148) with an upper bound for this quantity.

23Consider an FL network (with uniform edge weights) that contains a fully connected

cluster C which is connected via a single edge with another node i′ ∈ V \ C (see Figure

6.2). Compare the corresponding eigenvalues λ2

(
L(C)) and λ2

(
L(C′)

)
of C and the enlarged

cluster C′ := C ∪ {i′}.

135

C

small α

C

moderate α

C

large α

Fig. 6.3. As the regularization parameter α increases, the solutions of the

GTVMin (49) become approximately constant over larger subsets of nodes,

i.e., they exhibit stronger clustering.

6.3 Horizontal FL

HFL uses local datasets D(i), for i ∈ V , that contain data points characterized

by the same features [76]. As illustrated in Figure 6.4, we can think of each

local dataset D(i) as being a subset (or batch) of an underlying global dataset

D(global) :=
{(

x(1), y(1)
)
, . . . ,

(
x(m), y(m)

)}
.

In particular, local dataset D(i) is constituted by the data points of D(global)

with indices in {r1, . . . , rmi
},

D(i) :=
{(

x(r1), y(r1)
)
, . . . ,

(
x(rmi), y(rmi)

)}
.

We can interpret HFL as a generalization of semi-supervised learning

(SSL) [77]: For some local datasets i ∈ U we might not have access to the

label values of data points. Still, we can use the features of the data points

to construct (the weighted edges of) the FL network. To implement SSL,

we can solve GTVMin using a trivial loss function Li

(
w(i)

)
= 0 for each

unlabelled node i ∈ U . Solving GTVMin delivers model parameters w(i)

136

x
(1)
1 x

(1)
2 · · · x

(1)
d y(1)

x
(2)
1 x

(2)
2 · · · x

(2)
d y(2)

...
...

...

x
(m)
1 x

(m)
2 · · · x

(m)
d y(m)




D(global)

D(1)

D(i)

Fig. 6.4. HFL uses the same features to characterize data points in different

local datasets. Different local datasets are constituted by different subsets of

data points out of an underlying global dataset.

for all nodes i (including the unlabelled ones U). GTVMin-based methods

combine the information in the labelled local datasets D(i), for i ∈ V \ U and

their connections (via the edges of G) with nodes in U (see Figure 6.5).

137

i ∈ U

Fig. 6.5. HFL includes SSL as a special case. SSL involves a subset of nodes

U , for which the local datasets do not contain labels. We can take this into

account by using the trivial loss function Li (·) = 0 for each node i ∈ U .

However, we can still use the features in D(i) to construct an FL network G.

6.4 Vertical FL

VFL uses local datasets that are constituted by the same (identical) data

points. However, each local dataset uses a different choice of features to

characterize these data points [78]. Formally, VFL applications revolve

around an underlying global dataset

D(global) :=
{(

x(1), y(1)
)
, . . . ,

(
x(m), y(m)

)}
.

Each data point in the global dataset is characterized by d′ features x(r) =(
x
(r)
1 , . . . , x

(r)
d′

)T . The global dataset can only be accessed indirectly via local

datasets that use different subsets of the feature vectors x(r) (see Fig. 6.6).

For example, the local dataset D(i) consists of feature vectors

x(i,r) =
(
x
(r)
j1
, . . . , x

(r)
jd

)T
.

Here, we used a subset J (i) := {j1, . . . , jd} of the original d′ features (entries

138

of x(r)). At least one node i′ must have a local dataset D(i′) that contains the

label values y(1), . . . , y(m).

A potential toy application for vertical FL is a national social insurance

system. The global dataset comprises data points representing individuals

enrolled in the system. Each individual is characterized by multiple sets of

features sourced from different institutions: Healthcare providers contribute

medical records, offering health-related features. Financial service providers,

such as banks, supply features that characterize the economic situation of

the individual. Some individuals participate in retailer loyalty programs,

which generate consumer behaviour features. Additionally, social network

can provide real-time data on user activities and mobility patterns, further

enriching the available features. Since these diverse data sources belong to

separate entities, VFL enables collaborative learning while preserving data

privacy.

6.5 Personalized Federated Learning

Consider GTVMin (49) for learning local model parameters ŵ(i) for each

local dataset D(i). If the value of α in (49) is not too large, the local model

parameters ŵ(i) can be different for each i ∈ V. However, the local model

parameters are still coupled via the GTV term in (49).

For some FL use-cases we should use different coupling strengths for

different components of the local model parameters. For example, if local

models are deep ANNs we might enforce the parameters of input layers to be

identical while the parameters of the deeper layers might be different for each

local dataset.

139

x
(1)
1 x

(1)
2 · · · x

(1)
d y(1)

x
(2)
1 x

(2)
2 · · · x

(2)
d y(2)

...
...

...

x
(m)
1 x

(m)
2 · · · x

(m)
d y(m)




D(global)

D(1)
D(i)

Fig. 6.6. VFL uses local datasets that are derived from the same data points.

The local datasets differ in the choice of features used to characterize the

common data points.

The partial parameter sharing for local models can be implemented in

many different ways [79, Sec. 4.3.]:

• One way is to use a choice of the GTV penalty that is different from

ϕ =
∥∥w(i) −w(i′)

∥∥2

2
. In particular, we could construct the penalty

function as a combination of two terms,

ϕ
(
w(i) −w(i′)

)
:= α(1)ϕ(1)

(
w(i) −w(i′)

)
+ α(2)ϕ(2)

(
w(i) −w(i′)

)
. (149)

The functions ϕ(1) and ϕ(2) measure different components of the variation

w(i)−w(i′) across the edge {i, i′} ∈ E . For example, we might construct

ϕ(1) and ϕ(2) by (64) with different choices for the dataset D{i,i′}.

• Moreover, we might use different regularization strengths α(1) and α(2)

for different penalty components in (149) to enforce different subsets

140

of the model parameters to be clustered with different granularity, i.e.,

enforcing some of the model parameters to be constant across larger

subsets of nodes.

• For local models being deep ANNs, we enforce identical model parame-

ters in the layers closer to the input. In contrast, the layers closer to the

output are allowed to have different parameters across devices. Figure

6.7 illustrates this concept for local models constituted by ANNs with

a single hidden layer.

• Yet another technique for partial sharing of model parameters is to train

a hyper-model which, in turn, is used to initialize the training of local

models [80].

141

h(1)(x)

u(1) v(1)

h(2)(x)

h(3)(x)

Fig. 6.7. Personalized FL with local models being ANNs with a single hidden

layer. The ANN h(i) is parametrized by the vector w(i) =

((
u(i)

)T
,
(
v(i)

)T)T

,

with parameters u(i) of the hidden layer and the parameters v(i) of the output

layer. We couple the training of u(i) via GTVMin using the discrepancy

measure ϕ =
∥∥u(i) − u(i′)

∥∥2

2
.

142

6.6 Few-Shot Learning

Some ML applications involve data points belonging to a large number of

different categories. A prime example is the detection of a specific object

in a given image [81, 82]. Here, the object category is the label y ∈ Y of a

data point (image). The label space Y is constituted by the possible object

categories and, in turn, can be quite large. Moreover, for some categories, we

might only have a few example images in the training set.

Few-shot learning exploits structural similarities between object categories

to accurately detect objects with limited (or even no) training examples. A

principled approach to few-shot learning is GTVMin, which leverages rela-

tional information between categories. To formalize this approach, we define

an FL network G = (V , E ,A), where each node i ∈ V corresponds to an ele-

ment of the label space Y . The edge weights A encode prior knowledge about

category relationships, providing a structured way to propagate information

between object categories.

Each node i in G represents a distinct object category and corresponding

object detector. Solving GTVMin yields model parameters ŵ(i) for each

of these specialized object detectors. The coupling of these tailored object

detectors via GTVMin enables knowledge transfer across categories, improving

detection performance even in low-data regimes.

143

6.7 Exercises

6.1. Horizontal FL of a Linear Model [68, Sec. 8.2] Linear regression

learns the model parameters of a linear model by minimizing the average

squared error loss on a given dataset D. Consider an application where

the data points are gathered by different devices. We can model such an

application using an FL network with nodes i carrying different subsets

of D. Construct an instance of GTVMin such that its solutions coincide

(approximately) with the solution of plain vanilla linear regression.

6.2. Vertical FL of a Linear Model [68, Sec. 8.3] Linear regression

learns the model parameters of a linear model by minimizing the average

squared error loss on a given dataset D. Consider an application where the

features of a data point are measured by different devices. We can model such

an application using an FL network with nodes i carrying different features

of the same dataset D. In particular, node i carries the features xj with

j ∈ J (i). Construct an instance of GTVMin such that its solutions coincide

(approximately) with the solution of plain vanilla linear regression.

144

6.8 Proofs

6.8.1 Proof of Proposition 6.1

To verify (148), we follow a similar argument as used in the proof of Proposition

3.1.

First, we decompose the objective function f
(
w
)

in (102) as follows:

f(w) =∑
i∈C

(1/mi)
∥∥y(i)−X(i)w(i)

∥∥2

2
+α

[∑
i,i′∈C

Ai,i′

∥∥∥w(i)−w(i′)
∥∥∥2

2
+

∑
{i,i′}∈∂C

Ai,i′

∥∥∥w(i)−w(i′)
∥∥∥2

2

]
︸ ︷︷ ︸

=:f ′
(
w
)

+ f ′′(w)
. (150)

Note that only the first component f ′ depends on the local model parameters

w(i) of cluster nodes i ∈ C. Let us introduce the shorthand f ′(w(i)
)

for the

function obtained from f ′(w) for varying w(i), i ∈ C, but fixing w(i′) := ŵ(i′)

for i′ /∈ C.

We obtain the bound (148) via a proof by contradiction: If (148) does

not hold, the local model parameters w(i) := w(C), for i ∈ C, result in a

smaller value f ′(w(i)
)
< f ′(ŵ(i)

)
than the choice ŵ(i), for i ∈ C. This would

contradict the fact that ŵ(i) is a solution to (102).

145

First, note that

f ′(w(i)
)
=

∑
i∈C

(1/mi)
∥∥y(i)−X(i)w(C)∥∥2

2

+α

[∑
{i,i′}∈E
i,i′∈C

Ai,i′
∥∥w(C)−w(C)∥∥2

2
+

∑
{i,i′}∈E
i∈C,i′ /∈C

Ai,i′

∥∥∥w(C)−ŵ(i′)
∥∥∥2

2

]
(146)
=

∑
i∈C

(1/mi)
∥∥ε(i)∥∥2

2
+ α

∑
{i,i′}∈E
i∈C,i′ /∈C

Ai,i′

∥∥∥w(C)−ŵ(i′)
∥∥∥2

2

(a)

≤
∑
i∈C

(1/mi)
∥∥ε(i)∥∥2

2
+ α

∑
{i,i′}∈E
i∈C,i′ /∈C

2Ai,i′

(∥∥w(C)∥∥2

2
+
∥∥∥ŵ(i′)

∥∥∥2

2

)

≤
∑
i∈C

(1/mi)
∥∥ε(i)∥∥2

2
+ α |∂C| 2

(∥∥w(C)∥∥2

2
+R2

)
. (151)

Step (a) uses the inequality ∥u+v∥22 ≤ 2
(
∥u∥22+∥v∥22

)
which is valid for any

two vectors u,v ∈ Rd.

On the other hand,

f ′(ŵ(i)
)
≥ α

∑
i,i′∈C

Ai,i′

∥∥∥ŵ(i)−ŵ(i′)
∥∥∥2

2︸ ︷︷ ︸
(147)
= ∥w̃(i)−w̃(i′)∥2

2

(44)
≥ αλ2

(
L(C))∑

i∈C

∥∥w̃(i)
∥∥2

2
. (152)

If the bound (148) would not hold, then by (152) and (151) we would obtain

f ′(ŵ(i)
)
> f ′(w(i)

)
, which contradicts the fact that ŵ(i) solves (102).

146

7 Graph Learning for FL Networks

Chapter 3 introduced GTVMin as a flexible design principle for FL algorithms.

Chapter 5 explores how algorithms can be obtained by applying optimization

methods - such as the gradient-based methodss from Chapter 4 - to solve

GTVMin instances.

The computational and statistical properties of such algorithms depend

crucially on the structure of the underlying FL network. For example, both the

computational and communication costs of FL systems typically increase with

the number of edges in the FL network. Moreover, the graph topology governs

how local datasets are pooled into clusters with shared model parameterss.

In some settings, domain expertise can guide the construction of the FL

network. For instance, in health-care, known clinical similarities between

disease types are used to define edges connecting patients or diseases [83]. In

sensor networks, physical proximity and hardware connectivity constraints

naturally shape the graph structure [84, 85]. However, other applications lack

strong prior structure and require to learn the graph from data [86–89]. This

chapter presents techniques to infer FL networks from local datasets and

associated local loss functions.

This chapter is organized as follows. Section 7.1 discusses how the analysis

of FL algorithms can inform the design of the FL network. Section 7.2

presents methods to quantify discrepancies between local datasets. Section

7.3 formulates graph learning as an optimization problem that minimizes

the discrepancy between datasets stored at nodes that are connected by an

edge. The structure of the resulting graph can be influenced by imposing

connectivity constraints, such as a minimum required node degree.

147

7.1 Edges as Design Choice

Consider the GTVMin instance (51), which aims to learn local model param-

eterss for each linear model associated with a local dataset D(i). To solve

(51), we use Algorithm 4, which implements the gradient step (104) in a

message-passing fashion.

The GTVMin formulation (51) is defined for a fixed FL network G. Hence,

the structure of G significantly impacts both the statistical and computational

properties of Algorithm 4.

Statistical Properties. These can be assessed using a probabilistic model

for the local datasets. An important example is the clustering assumption

(146), discussed in the context of CFL in Section 3.3.1. Under the CFL

assumption, nodes in the same cluster should learn similar model parameterss.

According to Proposition 6.1, the solution to GTVMin will be approxi-

mately constant across a cluster C if the second smallest eigenvalue λ2

(
L(C))

is large and the cluster boundary |∂C| is small. Here, λ2

(
L(C)) refers to the

smallest nonzero eigenvalue of the Laplacian matrix of the induced subgraph

G(C).

Intuitively, λ2

(
L(C)) increases with the number of internal edges in C.

This can be made precise via Cheeger’s inequality [36, Ch. 21]. Alternatively,

we can approximate G(C) as a realization of an Erdős-Rényi (ER) graph, a

useful assumption especially if G itself resembles a typical realization of an

ER graph.

In an ER graph over C, each pair of nodes i, i′ ∈ C, with i ≠ i′, is connected

independently with probability pe. Formally, the presence of edges are i.i.d.

RVs b(i,i′), one for each unordered pair {i, i′} ⊆ C, indicating whether an edge

148

exists between the two nodes. As a result, edge occurrences across different

node pairs are mutually independent.

This independence greatly simplifies analysis. For instance, the Laplacian

matrix L(ER) of an ER graph can be expressed as a sum of independent

random matrices:

L(ER) =
∑
{i,i′}

b(i,i
′)T(i,i′). (153)

This decomposition involves, for each pair of different nodes i, i′ ∈ V, the

deterministic matrix

T(i,i′) =
(
e(i) − e(i

′)
)(
e(i) − e(i

′)
)T

.

Here, e(i) denotes the vector obtained from extracting the i-th column of the

identity matrix In. The decomposition (153) is useful for the analysis of the

eigenvalues of L(ER), e.g., via matrix concentration inequalities [90, 91].

Interpreting a graph G as (the realization of) an ER graph turns quantities

such as node degrees d(i) and eigenvalues like λ2

(
L(C)) into (realizations of)

RVs. The expected node degree is

E{d(i)} = pe(|C| − 1).

With high probability,

d(G)max ≈ pe(|C| − 1). (154)

Increasing pe results in a larger expected node degree and, thus, a higher

connectivity of G(C).

We can approximate λ2

(
L(C)) by the second smallest eigenvalue of the

expected Laplacian matrix

L := E{L(C)} = |C|peI− pe11
T .

149

A straightforward calculation yields

λ2(L) = |C|pe.

Thus, we arrive at the approximation

λ2

(
L(C)) ≈ λ2(L) = |C|pe

(154)
≈ d(G)max. (155)

The precise quantification of the approximation error in (155) is beyond our

scope. We refer interested readers to [90,92] for further analysis of random

graphs.

Computational Properties. The computational complexity of Algo-

rithm 4 depends on the amount of computation required by a single iteration

of its steps (3) and (4). Clearly, the per-iteration complexity of Algorithm

4 increases with increasing node degrees d(i). Indeed, step (3) requires to

communicate local model parameters across each edge of the FL network.

This communication can be implemented using different physical channels,

such as short-range wireless links or optical fibre connections [93,94].

To summarize, using an FL network with smaller d(i) results in less

computation and communication per iteration of Algorithm 4. Trivially, the

lowest per-iteration cost occurs when d(i) = 0, i.e., an empty FL network with

E = ∅. However, the overall computational cost also depends on the number

of iterations required to approximate the GTVMin solution (51).

According to (80), the convergence speed of the gradient steps (110) used

in Algorithm 4 depends on the condition number of the matrix Q in (103),

condition number =
λnd(Q)

λ1(Q)
.

Faster convergence is achieved when this ratio is close to one (see (84)).

150

The condition number of Q tends to be smaller when the ratio between

the maximum node degree d
(G)
max and the second smallest eigenvalue λ2

(
L(G))

is small (see (106) and (107)).

Thus, for a given maximum node degree d
(G)
max, we should place the edges

of an FL network so that λ2

(
L(G)) is large - leading to faster convergence of

Algorithm 4 without increasing per-iteration complexity.

Spectral graph theory also provides upper bounds on λ2

(
L(G)) in terms

of the node degrees [36,95,96]. These upper bounds can serve as a baseline

for evaluating practical constructions of the FL network: If the resulting

value λ2

(
L(G)) is close to its upper bound, then further attempts to improve

connectivity (in terms of spectral properties) are unlikely to yield significant

gains.

The next result provides an example of such an upper bound.

Proposition 7.1. Consider an FL network G with n>1 nodes and associated

Laplacian matrix L(G). Then, λ2

(
L(G)) cannot exceed the node degree d(i) of

any node by more than a factor n/(n−1). In other words,

λ2

(
L(G)) ≤ n

n−1
d(i), for every i=1, . . . , n. (156)

Proof. The bound (156) follows from the variational characterization (41) by

evaluating the quadratic form wTL(G)w for the specific vector

w̃ =

√
n

n−1

(
− 1

n
, . . . , 1− 1

n︸ ︷︷ ︸
w̃(i)

, . . . ,− 1

n

)T

.

This “test” vector is tailored to a particular node i ∈ V ; its only positive entry

is w̃(i) = 1−(1/n). It satisfies ∥w̃∥ = 1 and w̃T1 = 0, making it a feasible

vector for the optimization in (41).

151

Alternative – and potentially tighter – upper bounds for λ2

(
L(G)) can be

found in the graph theory literature [35,36,92,97].

The per-iteration complexity of FL algorithms increases with the node

degrees d(i) (and thus the total number of edges) in the FL network G. On

the other hand, the number of iterations required by Algorithm 4 typically

decreases as the second smallest eigenvalue λ2

(
L(G)) increases.

According to the upper bound in (156), a large value of λ2

(
L(G)) is only

possible if the node degrees d(i) - and hence the total number of edges -

are sufficiently large. Recent work has focused on constructing graphs that

maximize λ2

(
L(G)) given a fixed maximum node degree d

(G)
max = maxi∈V d

(i)

[60, 98].

Figure 7.1 illustrates this trade-off between per-iteration complexity and

the number of iterations required by FL algorithms.

152

nr. of iterations

number of edges in G

per-iteration complexity

Fig. 7.1. Computational trade-off in GTVMin-based methods such as Al-

gorithm 4: Increasing the number of edges in the FL network G raises the

per-iteration complexity, but typically reduces the total number of iterations

required for convergence.

153

7.2 Measuring (Dis-)Similarity Between Datasets

The main idea behind GTVMin is to enforce similar model parameters at two

different nodes i and i′ that are connected by an edge {i, i′} with (relatively)

large edge weight Ai,i′ . In general, the edges (and their weights) of the

FL network are design choices. Placing an edge between two nodes i, i′ is

typically only useful if the local datasets D(i),D(i′) (generated by devices i, i′)

have similar statistical properties. We next discuss different approaches for

measuring the similarity – or, equivalently, the discrepancy (i.e., the lack of

similarity) – between two local datasets.

The first approach is based on a probabilistic model, i.e., we interpret the

local dataset D(i) as realizations of RVs with some parametric probability

distribution p(i)
(
D(i);w(i)

)
. We can then measure the discrepancy between D(i)

and D(i′) via the Euclidean distance
∥∥w(i) −w(i′)

∥∥
2

between the parameters

w(i) and w(i′) of the corresponding probability distributions.

In most FL applications, the parameters of the probability distribution

p(i)
(
D(i);w(i)

)
underlying a local dataset are unknown.24 However, it is often

possible to estimate these parameters using statistical inference techniques

such as maximum likelihood estimation [23, Ch. 3], [30]. Given the estimates

ŵ(i) and ŵ(i′) for the model parameters, we can then compute the discrepancy

measure d(i,i
′) :=

∥∥ŵ(i) − ŵ(i′)
∥∥
2
.

Example. Consider local datasets, each consisting of a single number

y(i) = w(i)+n(i) with n(i) ∼ N (0, 1) and model parameter w(i), for i = 1, . . . , n.

The maximum likelihood estimator for w(i) is then given by ŵ(i) = y(i) [30,99].
24One exception is when the local dataset is generated by drawing i.i.d. realizations from

p(i)
(
D(i);w(i)

)
.

154

Accordingly, the resulting discrepancy measure is [100].

d(i,i
′) :=

∣∣y(i) − y(i
′)
∣∣.

Example. Consider an FL network with nodes i ∈ V that carry local

datasets D(i). Each D(i) consists of data points with labels in the label space

Y(i). We can measure the similarity between nodes i and i′ by the fraction of

data points in D(i)
⋃

D(i′) with labels lying in Y(i) ∩ Y(i′) [101].

Example. Consider local datasets D(i) constituted by images of hand-

written digits 0, 1, . . . , 9. We model a local dataset using a hierarchical

probabilistic model: Each node i ∈ V is assigned a deterministic but unknown

probability distribution α(i) =
(
α
(i)
0 , . . . , α

(i)
9

)
. The entry α

(i)
j is the fraction

of images at node i that show digit j. We interpret the labels y(i,1), . . . , y(i,mi)

as realizations of i.i.d. RVs, with values in {0, 1, . . . , 9} and distributed ac-

cording to α(i). We also interpret the features as realizations of RVs having

conditional probability distribution p(x|y), which is the same for all nodes

i ∈ V . We can then estimate the dis-similarity between nodes i and i′ via the

distance between (estimations of) the parameters α(i) and α(i′).

The above examples of a discrepancy measure – based on parameter

estimates of a probabilistic model – are all special cases of a more general

two-step approach:

• First, we assign a vector representation z(i) ∈ Rm′ to each node i ∈ V

[23, 102].

• Second, we define the discrepancy d(i,i
′) between nodes i and i′ as the

distance between the representation vectors z(i) and z(i
′), e.g.,

d(i,i
′) :=

∥∥∥z(i) − z(i
′)
∥∥∥ .

155

We next discuss three specific implementations of the first step to obtain the

representation vector for each node i.

Parametric Probabilistic Models. If we use a parametric probabilistic

model p
(
D(i);w(i)

)
for the local dataset D(i), we can use an estimator ŵ(i) to

obtain z(i). One popular approach for estimating the model parameters of a

probabilistic model is the ML principle [23].

Gradients. We now discuss a construction for the vector representation

z(i) ∈ Rm′ that is inspired by the update structure of SGD. In particular, we de-

fine the discrepancy between two local datasets by treating them as two batches

used by SGD to train a model. If these two batches consist of data points gen-

erated from similar probability distributions, their corresponding gradient ap-

proximations (112) are close. This suggests to use the gradient ∇f(w′) of the

average loss (or empirical risk) f(w) := (1/|D(i)|)
∑

(x,y)∈D(i) L
(
(x, y) , h(w)

)
as a vector representation z(i) for D(i). We can generalize this construction, for

parametric local models H(i), by using the gradient of the local loss function,

z(i) := ∇Li (v) . (157)

Note that the construction (157) requires to specify the model parameters v

at which the gradient is evaluated.

Feature learning. Another approach is to use an autoencoder [102, Ch.

14] to learn an embedding of a local dataset. In particular, we feed the dataset

into an encoder ANN that has been jointly trained with a decoder ANN on

a suitable learning task. The encoder maps the dataset to a latent vector,

or embedding, which serves as its vector representation. A generic setup is

illustrated in Figure 7.2.

156

D(i)
encoder

h(·)
z(i) ∈ Rm′

decoder

h∗(·) D̂(i)

Fig. 7.2. A generic autoencoder consists of an encoder that maps the

input to a latent representation, and a decoder that attempts to reconstruct

the original input. Both components are trained jointly by minimizing a

reconstruction loss (see [23, Ch. 9]). When a local dataset is used as input,

its latent representation can serve as a compact vector embedding.

7.3 Graph Learning Methods

Assume we have constructed a discrepancy measure d(i,i′) ∈ R+ that quantifies

the dissimilarity between any two local datasets D(i) and D(i′). One way to

construct an FL network is by connecting each node i to its nearest neighbors,

i.e., the nodes i′ ∈ V \ {i} with the smallest values of d(i,i′).

An alternative to this nearest-neighbour construction is to formulate graph

learning as a constrained linear optimization problem. Let us measure the

quality of a candidate edge-weight assignment Ai,i′ ∈ R+ using the objective

function ∑
i,i′∈V

Ai,i′d
(i,i′). (158)

This function penalizes large weights between nodes that are dissimilar.

Without any constraints, the minimum of (158) is trivially achieved by

setting Ai,i′ = 0 for all pairs, i.e., resulting in an empty graph.

As discussed in Section 7.1, however, a useful FL network must contain

a sufficient number of edges to ensure that GTVMin produces meaningful

157

model parameterss. In particular, the pooling effect of GTVMin depends

on the second smallest eigenvalue λ2(L
(G)) of the Laplacian matrix being

sufficiently large, which in turn requires that the graph is sufficiently well

connected (see (155)).

To enforce the presence of edges, we introduce the following constraints:

Ai,i = 0,
∑
i′ ̸=i

Ai,i′ = d(G)max for all i ∈ V , (159)

Ai,i′ ∈ [0, 1] for all i, i′ ∈ V .

These constraints ensure that each node i has (weighted) node degree
∑

i′ ̸=i Ai,i′

equal to d
(G)
max, and that edge weights are bounded and symmetric.

Combining the objective function (158) with the constraints (159), we

arrive at the following graph learning principle:{
Âi,i′

}
i,i′∈V ∈ argmin

Ai,i′=Ai′,i

∑
i,i′∈V

Ai,i′d
(i,i′) (160)

s.t. Ai,i′ ∈ [0, 1] ∀i, i′ ∈ V ,

Ai,i = 0 ∀i ∈ V ,∑
i′ ̸=i

Ai,i′ = d(G)max ∀i ∈ V .

This constrained minimization problem is a special case of the general

quadratic program introduced in (89). Because the objective is linear, (160)

is equivalent to a linear program [46, Sec. 4.3]. Approximate solutions to

(160) can be efficiently computed using projected GD, as discussed in Section

4.5.

The first constraint in (160) bounds edge weights between 0 and 1. The

second prohibits self-loops, which have no effect on the outcome of GTVMin

158

(see (49)). The final constraint enforces regularity: every node has the same

node degree d(i) = d
(G)
max.

While regular graphs simplify the analysis of GTVMin, they may not

always be desirable in practice. In some FL applications, it may be advanta-

geous to allow varying node degrees – such as graphs with a small number of

“hub” nodes with high node degree [11, 100], or to minimize the total number

of edges.

We can enforce an upper bound on the total number Emax of edges by

modifying the last constraint in (160),

Âi,i′ ∈ argmin
Ai,i′=Ai′,i

∑
i,i′∈V

Ai,i′d
(i,i′) (161)

Ai,i′ ∈ [0, 1] for all i, i′ ∈ V ,

Ai,i = 0 for all i ∈ V ,∑
i′,i∈V

Ai,i′ = Emax.

The problem has a closed-form solution as explained in [100]: It is obtained

by placing the edges between those pairs i, i′ ∈ V that result in the smallest

discrepancy d(i,i
′). However, it might still be useful to solve (161) via itera-

tive optimization methods such as the gradient-based methods discussed in

Chapter 4. These methods can be implemented in a fully distributed fashion

as message passing over an underlying communication network [68]. This

communication network might be significantly different from the learned FL

network. For some FL applications, the functional connectivity of two devices

i and i′ reflects also a similarity between probability distributions of local

datasets D(i) and D(i′) [103].

159

7.4 Exercises

7.1. A Simple Ranking Approach. Consider a collection of devices

i = 1, . . . , n = 100, each carrying a local dataset that consists of a single

vector x ∈ R(mi). We interpret the vectors x ∈ Rmi , for i = 1, . . . , n, as

statistically independent RVs. Moreover, the vector x ∈ Rmi is a realization

of a multivariate normal distribution N (ci1, I) with given (fixed) quantities

ci ∈ {−1, 1}. We construct an FL network by determining for each node i its

neighborhood N (i) as follows

• we randomly select a fraction B(i) of 10 percent from all other nodes

• we define N (i) as those i′ ∈ B(i) whose corresponding values

|(1/mi)1
Tx(i) − (1/mi′)1

Tx(i′)|

are among the 3 smallest.

Analyze the probability that some neighborhood N (i) contains a node i′ such

that ci ̸= ci′ .

160

8 Trustworthy FL

This chapter examines how regulatory frameworks for trustworthy AI inform

the design and implementation of GTVMin-based methods. Our discussion is

primarily guided by the key requirements for trustworthy AI as formulated

by the European Union’s High-Level Expert Group on AI [104]. Comparable

ethical frameworks have emerged globally, including Australia’s AI Ethics

Principles [105], the OECD AI Principles [106], China’s governance efforts

[107–109], and U.S. developments such as the NIST AI Risk Management

Framework [110], the Blueprint for an AI Bill of Rights [111], and Executive

Order 14110 on the Safe, Secure, and Trustworthy Development and Use of

Artificial Intelligence [112].

Section 8.1 examines how FL systems can support human agency and

oversight, as required by the principle of respect for human autonomy within

the broader framework of trustworthy AI.

Section 8.2 investigates the robustness of FL systems against different

forms of perturbations. Perturbations can arise from the intrinsic variability

of local datasets that are obtained from stochastic data generation processes.

Another source for perturbations are imperfections of the communication links

between devices. We devote Chapter 10 to perturbations that are intentional

(or adversarial) during so-called cyber attacks.

Section 8.3 addresses the need for privacy protection and data governance.

This includes regulatory constraints on data processing, the data minimization

principle, and the organizational structures needed to enforce compliance.

We devote Chapter 9 to a detailed treatment of quantitative measures for

privacy leakage and techniques to mitigate it in GTVMin-based FL systems.

161

Section 8.4 focuses on the transparency and the explainability of GTVMin-

based FL systems. We introduce quantitative metrics for subjective explain-

ability that reflect how well personalized models align with individual users’

expectations. We can incorporate these metrics into GTVMin-based methods

to ensure tailored explainability for heterogeneous populations of device users.

8.1 Human Agency and Oversight

“..AI systems should support human autonomy and decision-making, as pre-

scribed by the principle of respect for human autonomy. This requires that AI

systems should both act as enablers to a democratic, flourishing and equitable

society by supporting the user’s agency and foster fundamental rights, and

allow for human oversight...” [104, p.15]

Human Dignity. Learning personalized model parameters for recom-

mender systems allows to boost addiction or widespread emotional manipu-

lation resulting in genocide [113–115]. KR1 rules out certain design choices

for the labels of data points. In particular, we might not use the mental

and psychological characteristics of a user as the label. We should avoid loss

functions that can be used to train predictors of psychological characteristics.

Using personalized ML models to predict user preferences for products or

susceptibility towards propaganda is also referred to as micro-targeting [116].

Simple is Good. Human oversight can be facilitated by relying on simple

local models. Examples include linear models with few features or decision

trees with a small tree depth. However, we are unaware of a widely accepted

definition of when a model is simple. Loosely speaking, a simple model results

in a learned hypothesis that allows humans to understand how features of a

162

data point relate to the prediction h(x). This notion of simplicity is closely

related to the concept of explainability which we discuss in more detail in

Section 8.4.

Continuous Monitoring. In its simplest form, GTVMin-based methods

involve a single training phase, i.e., learning local model parameters by

solving GTVMin. However, this approach is only useful if the data can be

well approximated by an i.i.d. assumption. In particular, this approach works

only if the statistical properties of local datasets do not change over time. For

many FL applications, this assumption is unrealistic (consider a social network

which is exposed to constant change of memberships and user behaviour). It

is then important to continuously compute a validation error which is then

used, in turn, to diagnose the overall FL system (see [23, Sec. 6.6]).

8.2 Technical Robustness and Safety

“...Technical robustness requires that AI systems be developed with a preven-

tative approach to risks and in a manner such that they reliably behave as

intended while minimising unintentional and unexpected harm, and preventing

unacceptable harm. ...’ [104, p.16].

Practical FL systems are obtained by implementing FL algorithms in

physical distributed computers [17,18]. One example of a distributed computer

is a collection of smartphones that are connected either by short-range wireless

links or by a cellular network.

Distributed computers (as physical objects) typically incur imperfections,

such as a temporary lack of connectivity or a mobile devices that run out

of battery and therefore become inactive. Moreover, the data generation

163

processes can be subject to perturbations such as statistical anomalies or

outliers. Section 8.2 studies in some detail the robustness of GTVMin-based

systems against different perturbations of data sources and imperfections of

computational infrastructure.

Consider a GTVMin-based FL system that trains a single (global) linear

model in a distributed fashion from a collection of local datasets D(i), for

i = 1, . . . , n. As discussed in Section 6.1, this single-model FL setting uses

GTVMin (51) over a connected FL network with a sufficiently large choice of

α.

To ensure KR2 we need to understand the effect of perturbations on a

GTVMin-based FL system. These perturbations might be intentional (or

adversarial) and affect the local datasets used to evaluate the loss of local

model parameters or the computational infrastructure used to implement a

GTVMin-based method (see Chapter 5). We next explain how to use some

of the theoretic tools from previous chapters to quantify the robustness of

GTVMin-based FL systems.

8.2.1 Sensitivity Analysis

As pointed out in Chapter 3, GTVMin (51) can be rewritten as the minimiza-

tion of a quadratic function,

min
w=stack{w(i)}ni=1

wTQw + qTw. (162)

The matrix Q and vector q are determined by the feature matrices X(i) and

label vectors y(i) at the nodes i ∈ V (see (24)). We next study the sensitivity

164

of (the solutions of) (162) towards external perturbations of the label vector.25

Consider an additive perturbation ỹ(i) := y(i) + ε(i) of the label vector

y(i). Using the perturbed label vector ỹ(i) results also in a “perturbation” of

GTVMin (162),

min
w=stack{w(i)}

wTQw + qTw + nTw + c. (163)

An inspection of (24) yields that n =

((
ε(1)

)T
X(1), . . . ,

(
ε(n)

)T
X(n)

)T

. The

next result provides an upper bound on the deviation between the solutions

of (162) and (163).

Proposition 8.1. Consider the GTVMin instance (162) for learning local

model parameters of a linear model for each node i ∈ V of an FL network G.

We assume that the FL network is connected, i.e., λ2

(
L(G)) > 0 and the local

datasets are such that λ̄min > 0 (see (105)). Then, the deviation between the

solution ŵ(i) to (162) and the solution w̃(i) to the perturbed problem (163) is

upper bounded as

n∑
i=1

∥∥ŵ(i) − w̃(i)
∥∥2

2
≤ λmax(1 + ρ2)2[

min{λ2

(
L(G)

)
αρ2, λ̄min/2}

]2 n∑
i=1

∥∥ε(n)∥∥2

2
.

Here, we used the shorthand ρ := λ̄min/(4λmax) (see (105)).

Proof. The assumptions of Proposition 8.1 allow to apply the lower bound

(107) on the eigenvalues of the matrix Q in (162).
25Our study can be generalized to also take into account perturbations of the feature

matrices X(i), for i = 1, . . . , n.

165

8.2.2 Estimation Error Analysis

Proposition 8.1 characterizes the sensitivity of GTVMin solutions against

external perturbations of the local datasets. While this notion of robustness

is important, it might not suffice for a comprehensive assessment of an FL

system. For example, we can trivially achieve perfect robustness by delivering

constant model parameters, e.g., ŵ(i) = 0. Clearly, such a FL system is not

very useful.

Another form of robustness is to ensure a small estimation error of (51).

To study this form of robustness, we use a variant of the probabilistic model

(59): We assume that the labels and features of data points of each local

dataset D(i), for i = 1, . . . , n, are related via

y(i) = X(i)w + ε(i). (164)

In contrast to Section 3.3.2, we assume that all components of (164) are

deterministic. In particular, the noise term ε(i) is a deterministic but unknown

quantity. This term accommodates any perturbation that might arise from

technical imperfections or intrinsic label noise due to random fluctuations in

the labelling process.26

In the ideal case of no perturbation, we would have ε(i) = 0. However,

in general might only know some upper bound measure for the size of the

perturbation, e.g.,
∥∥ε(i)∥∥2

2
. We next present upper bounds on the estimation

error ŵ(i) −w incurred by the GTVMin solutions ŵ(i).

This estimation error consists of two components, the first component
26Consider labels obtained from physical sensing devices which are typically subject to

measurement errors [117].

166

being avg
{
ŵ(i′)

}
−w for each node i ∈ V . Note that this error component is

identical for all nodes i ∈ V . The second component of the estimation error is

the deviation w̃(i) := ŵ(i) − avg
{
ŵ(i′)

}
of the learned local model parameters

ŵ(i′), for i′ = 1, . . . , n, from their average avg
{
ŵ(i′)

}
= (1/n)

∑n
i′=1 ŵ

(i′). As

discussed in Section 3.3.2, these two components correspond to two orthogonal

subspaces of Rdn.

According to Proposition 3.1, the second error component is upper bounded

as
n∑

i=1

∥∥w̃(i)
∥∥2

2
≤ 1

λ2α

n∑
i=1

(1/mi)
∥∥ε(i)∥∥2

2
. (165)

To bound the first error component c̄−w, using the shorthand c̄ := avg
{
ŵ(i)

}
,

we first note that (see (51))

c̄=argmin
w∈Rd

∑
i∈V

(1/mi)
∥∥y(i)−X(i)

(
w−w̃(i)

)∥∥2

2
+α

∑
{i,i′}∈E

Ai,i′

∥∥∥w̃(i)−w̃(i′)
∥∥∥2

2
. (166)

Using a similar argument as in the proof for Proposition 2.1, we obtain

∥c̄−w∥22 ≤

∥∥∥∥∥
n∑

i=1

(1/mi)
(
X(i)

)T (
ε(i) +X(i)w̃(i)

)∥∥∥∥∥
2

2

/(nλ̄min)
2. (167)

Here, λ̄min is the smallest eigenvalue of (1/n)
∑n

i=1Q
(i), i.e., the average of

the matrices Q(i) = (1/mi)
(
X(i)

)T
X(i) over all nodes i ∈ V.27 Note that the

bound (167) is only valid if λ̄min > 0 which, in turn, implies that the solution

to (166) is unique.
27We encountered the quantity λ̄min already during our discussion of gradient-based

methods for solving the GTVMin instance (51) (see (105)).

167

We can develop (167) further using∥∥∥∥∥
n∑

i=1

(1/mi)
(
X(i)

)T (
ε(i) +X(i)w̃(i)

)∥∥∥∥∥
2

(a)

≤
n∑

i=1

∥∥∥(1/mi)
(
X(i)

)T (
ε(i) +X(i)w̃(i)

)∥∥∥
2

(b)

≤
√
n

√√√√ n∑
i=1

∥∥∥(1/mi)
(
X(i)

)T (
ε(i) +X(i)w̃(i)

)∥∥∥2

2

(c)

≤
√
n

√√√√ n∑
i=1

2
∥∥∥(1/mi)

(
X(i)

)T
ε(i)

∥∥∥2

2
+ 2

∥∥∥(1/mi)
(
X(i)

)T
X(i)w̃(i)

∥∥∥2

2

(d)

≤
√
n

√√√√ n∑
i=1

(2/mi)λmax ∥ε(i)∥22+2λ2
max ∥w̃(i)∥22. (168)

Here, step (a) uses the triangle inequality of norms, step (b) uses the Cauchy-

Schwarz inequality, step (c) uses the inequality ∥a+ b∥22 ≤ 2

(
∥a∥22 + ∥b∥22

)
,

and step (d) uses the maximum eigenvalue λmax := maxi∈V λd

(
Q(i)

)
of the

matrices Q(i) = (1/mi)
(
X(i)

)T
X(i) (see (105)).

Inserting (168) into (167) results in the upper bound

∥c̄−w∥22 ≤ 2
n∑

i=1

[
(1/mi)λmax

∥∥ε(i)∥∥2

2
+ λ2

max

∥∥w̃(i)
∥∥2

2

]
/(nλ̄2

min)

(165)
≤ 2

(
λmax + (λ2

max/(λ2α))
) n∑

i=1

(1/mi)
∥∥ε(i)∥∥2

2
/(nλ̄2

min). (169)

The upper bound (169) on the estimation error of GTVMin-based methods

depends on both, the FL network G via the eigenvalue λ2 of L(G), and the

feature matrices X(i) of the local datasets (via the quantities λmax and λ̄min

as defined in (105)). Let us next discuss how the upper bound (169) might

guide the choice of the FL network G and the features of data points in the

168

local datasets.

According to (169), we should use an FL network G with large λ2

(
L(G))

to ensure a small estimation error for GTVMin-based methods. Note that we

came across the same design criterion already when discussing graph learning

methods in Chapter 7. In particular, using an FL network with large λ2

(
L(G))

also tends to speed up the convergence of gradient-based methods for solving

GTVMin (such as Algorithm 4).

The upper bound (169) suggests using features that result in a small ratio

λmax/λ̄min between the quantities λmax and λ̄min (see (105)). Some feature

learning methods have been proposed in order to minimize this ratio [23,118].

8.2.3 Robustness of FL Algorithms

The previous sub-sections studied the robustness of GTVMin solutions against

perturbations of local datasets. Ensuring trustworthy FL systems also requires

robustness of FL algorithms against perturbations of their executions. It

turns out that our design choices (e.g., the shape of local loss functions) for

GTVMin crucially affect the robustness of the FL algorithms discussed in

Section 5.

For ease of exposition, we will focus on FL algorithms for parametric local

models that are based on the update

w(i,k+1) ∈ argmin
w(i)∈Rd

Li

(
w(i)

)
+

∑
i′∈N (i)

Ai,i′ϕ
(
w(i′,k) −w(i,k)

) . (170)

Note that Algorithm 5 and Algorithm 11 use (170) as their core computational

step. We next discuss the robustness of (170) against perturbations of the

169

model parameters w(i′,k) that device receives from its neighbors i′ ∈ N (i). We

focus on two specific choices for the GTV penalty function ϕ.

GTV penalty ϕ(·) = ∥·∥22. For the penalty function ϕ(w(i)−w(i′)) =∥∥w(i)−w(i′)
∥∥2

2
, we can rewrite (170) as (see Exercise 5.6)

w(i,k+1) ∈ argmin
w(i)∈Rd

Li

(
w(i)

)
+ αd(i)

∥∥∥w(i) − ŵ(N (i))
∥∥∥2

2
. (171)

Here, we used ŵ(N (i)) := (1/d(i))
∑

i′∈N (i) Ai,i′w
(i′,k) and the weighted node

degree d(i) =
∑

i′∈N (i) Ai,i′ (see (34)).

If the local loss function Li (·) is convex, and under some mild technical

conditions,28 the update (171) is well-defined, i.e., the minimization has a

unique solution [38, Ch. 6]. Moreover, the update (171) then coincides with

an application of the proximal operator proxLi(·),ρ(·) (see (57)) of Li (·) [39],

w(i,k+1) = proxLi(·),ρ(ŵ
(N (i))) with ρ = 2αd(i). (172)

Figure 8.1 illustrates the update (172) as a straight line. The slope

of this line indicates the robustness of (172) against perturbations of the

received model parameters w(i′,k), for i′ ∈ N (i). These perturbations re-

sult in a modified input w̃(i) (instead of ŵ(N (i))) for the proximal operator

proxLi(·),ρ(ŵ
(N (i))). A natural quantitative measure for the robustness (or

stability) of (172) is∥∥∥proxLi(·),ρ(w̃
(i))− proxLi(·),ρ(ŵ

(N (i)))
∥∥∥
2∥∥w̃(i) − ŵ(N (i))

∥∥
2

. (173)

28Strictly speaking, we need to require loss function Li (·) to have a non-empty and

closed epigraph which does not contain any non-horizontal lines [39].

170

It turns out that if the local loss function Li (·) is strongly convex with

coefficient σ, then (173) is upper bounded by [72, Sec. 6]

1

1 + (σ/ρ)
=

1

1 + (σ/(2αd(i)))
. (174)

We can interpret the quantity (174) as a measure for the robustness of the

update (171). The smaller this quantity, the more robust are FL systems

based on (171).

Note how the robustness measure (174) can guide the design choices for

the components of GTVMin. In particular, to ensure a small value (174)

(ensuring robustness), we should use

• a local loss function that is strongly convex with a large coefficient σ,

• a FL network with small node degrees d(i),

• a small value α for GTVMin parameter.

171

w(i)

w(i,k+1)

proxLi(·),ρ(w
(i))

ŵ(N (i)) w̃(i)

Fig. 8.1. For a convex local loss function Li (·), the update (171) becomes the

evaluation of the proximal operator proxLi(·),ρ(·) with ρ = 2αd(i). We can

measure the robustness of (171) by the slope of proxLi(·),ρ(·) (see (173)).

GTV penalty ϕ(·) = ∥·∥2. Let us now study (170) for the centre node

i = 1 of a star-shaped FL network (see Figure 5.3). This uses the trivial

local loss function Li (·) ≡ 0 and is connected via unit-weight edges to the

peripheral nodes i′ = 2, . . . , n. The variation of local model parameters is

measured with the penalty function ϕ(w(i) −w(i′)) =
∥∥w(i) −w(i′)

∥∥
2
. This

special case of (170) can be written as

w(1,k+1) ∈ argmin
w(i)∈Rd

n∑
i′=2

∥∥∥w(i′,k) −w(i)
∥∥∥
2
. (175)

Note that (175) is nothing but the geometric median of the model parameters

w(i′,k), for i′ ∈ N (i). The usefulness of the geometric median for robust FL

has been studied recently [119].

The update (175) defines a non-smooth convex optimization problem.

Any solution w(1,k+1) to this problem must satisfy the subgradient optimality

172

condition

n∑
i′=2

g(i′) = 0 , with g(i′) =


w(i′,k)−w(1,k+1)

∥w(i′,k)−w(1,k+1)∥
2

if w(i′,k) ̸= w(1,k+1)

u ∈ B(1) otherwise,
(176)

where B(1) := {u ∈ Rd : ∥u∥2 ≤ 1} denotes the unit Euclidean ball.

Each g(i′) is a subgradient of the convex non-smooth function f(w(i)) :=∥∥w(i′,k) −w(i)
∥∥
2
.

Figure 8.2 illustrates the optimality condition (176) for the case where node

i = 1 has three neighbors, two of which are trustworthy. The third neighbour

is not trustworthy and may send arbitrarily corrupted model parameters.

Despite such adversarial perturbations, the solution w(1,k+1) of (176) cannot

be arbitrarily far from the model parameters of the trustworthy neighbors,

provided they form the majority.

Intuitively, if the solution were far from the honest models, then the

corresponding subgradients g(i′) for the trustworthy neighbors i′ ∈ N (i) would

point in nearly the same direction, and their sum would have a norm close

to the number of honest neighbors. However, the subgradients from the

non-trustworthy nodes—being unit vectors—cannot cancel this sum unless

they are sufficiently numerous, which contradicts the majority assumption.

For a more detailed robustness analysis of (176), we refer to [120, Thm. 2.2].

173

w(1,k+1)

w(2,k)

w(3,k)

w(3,k)−w(1,k+1)

∥w(3,k)−w(1,k+1)∥
2

trustworthy

perturbed

w(4,k)

Fig. 8.2. Illustration of the (zero-subgradient) optimality condition (176) for

the update (175). The arrows represent unit-norm subgradients arising from

the components
∥∥w(i′,k) −w(i)

∥∥
2

for i′ = 2, . . . , n.

174

8.2.4 Network Resilience

The previous sections studied the robustness of GTVMin-based methods

against perturbations of local datasets (see Exercise 8.1) and in terms of

ensuring a small estimation error (see (169)). We also need to ensure that FL

systems are robust against imperfections of the computational infrastructure

used to solve GTVMin. These imperfections include hardware failures, running

out of battery or lack of wireless connectivity.

Chapter 5 showed how to design FL algorithms by applying gradient-based

methods to solve GTVMin (51). We obtain practical FL systems by imple-

menting these algorithms, such as Algorithm 4, in a particular computational

infrastructure. Two important examples of such an infrastructure are mobile

networks and wireless sensor networks [19,121].

The effect of imperfections in the implementation of the GD based Al-

gorithm 4 can be modelled as perturbed GD (87) from Chapter 4. We can

then analyze the robustness of the resulting FL system via the convergence

analysis of perturbed GD discussed in Section 4.4.

According to (88), the performance of the decentralized Algorithm 4

degrades gracefully in the presence of imperfections such as missing or faulty

communication links. In contrast, the server-based implementation of FedAvg

Algorithm 9 offers a single point of failure (the server).

Instead of modelling the effect of network failures as perturbed GD, we can

instead interpret it as exact GD applied to a perturbed instance of GTVMin.

This perturbed instance uses a pruned FL network G̃, consisting of edges that

are still active (i.e., corresponding to active communication links).

The effectiveness of GTVMin crucially depends on the second-smallest

175

eigenvalue λ2 of the Laplacian matrix (36) associated with the FL network G̃

(see Section 3.3.2). As discussed in Section 7.1, λ2 reflects how well-connected

the FL network G̃ is. A larger λ2 means better connectivity, which is required

by GTVMin to combine the information provided by devices that work on

similar learning tasks (see Section 6.2).

To make GTVMin robust against communication link failures, we need

to design the original FL network G so that even if some edges are removed,

the resulting G̃ still stays well connected—that is, λ2 remains large enough.

This idea is related to resilient network design, which studies how to build

networks that stay connected even when some parts fail [122,123].

8.3 Privacy and Data Governance

“..privacy, a fundamental right particularly affected by AI systems. Prevention

of harm to privacy also necessitates adequate data governance that covers the

quality and integrity of the data used...” [104, p.17].

We have introduced GTVMin and FL networks as abstract mathematical

structures for the study of FL systems. However, to obtain actual FL systems

we need to implement these mathematical concepts in a given physical hard-

ware. These implementations incur deviations from the (idealized) GTVMin

formulation (49) and the gradient-based methods (such as Algorithm 4) used

to solve it. For example, using quantized label values results in a quantization

error. Moreover, the local datasets can deviate significantly from a typical

realization of i.i.d. RVs, which is referred to as statistical bias [124, Sec. 3.3.])

Data processing regulations limit the choice of the features of a data

point [125–127]. In particular, the general data protection regulation (GDPR)

176

includes a data minimization principle which requires to use only features

that are relevant for predicting the label.

Data Governance. Some FL applications involve local datasets that are

generated by human users, i.e., personal data. Whenever personal data is

used by a FL method, special care must be dedicated towards data protection

regulations [127]. It is useful (or even compulsory) to designate a data

protection officer and conduct impact assessments [104].

Privacy. The operation of an FL system must not violate the fundamental

human right to privacy [128]. One of most important characteristics of FL,

and distinguishing from distributed optimization, is the privacy friendly

exchange of information among the system components. We dedicate the

entire Chapter 9 to the discussion of quantitative measures and methods for

privacy protection in GTVMin-based FL systems.

8.4 Transparency

Traceability. This key requirement includes the documentation of design

choices (and underlying business models) for a GTVMin-based FL system.

This includes the source for the local datasets, the local models, the local

loss function as well as the construction of the FL network. Moreover, the

documentation should also cover the details of the implemented optimization

method used to solve GTVMin. This documentation might also require the

periodic storing of the model parameters along with a time stamp (logging).

Communication. Depending on the use case, FL systems need to

communicate the capabilities and limitations to their end users (e.g., of a

digital health app running on a smartphone). For example, we can indicate a

177

measure of uncertainty about the predictions delivered by the trained local

models. Such an uncertainty measure can be obtained naturally from a

probabilistic model for the data generation. For example, the conditional

variance of the label y, given the features x of a random data point. Another

example of an uncertainty measure is the validation error of a trained local

model.

Explainability. The transparency of an FL system can be facilitated by

a sufficient level of explainability of the trained personalized model ĥ(i) ∈ H(i).

It is important to note that the explainability of ĥ(i) is subjective: A given

learned hypothesis ĥ(i) might offer a high degree of explainability to one user

(a graduate student at a university) but a low degree of explainability to

another user (a high-school student). We must ensure explainability or the

trained models ĥ(i) for potentially different users of the devices i = 1, . . . , n.

The explainability of trained ML models is closely related to its simu-

latability [129–131]: How well can a user anticipate (or guess) the prediction

ŷ = ĥ(i)(x) delivered by ĥ(i) for a data point with features x. We can then

measure the explainability of ĥ(i)(x) to the user at node i by comparing the

prediction ĥ(i)(x) with the corresponding guess (or simulation) u(i)(x).

We can enforce (subjective) explainability of FL systems by modifying

the local loss functions in GTVMin. For ease of exposition, we focus on the

GTVMin instance (102) for training local (personalized) linear models. For

each node i ∈ V , we construct a test-set D(i)
t and ask user i to deliver a guess

u(i)(x) for each data point in D(i)
t .29

29We only use the features of the data points in D(i)
t , i.e., this dataset can be constructed

from unlabeled data.

178

We measure the (subjective) explainability of a linear hypothesis with

model parameters w(i) by

(1/
∣∣D(i)

t

∣∣) ∑
x∈D(i)

t

(
u(i)

(
x
)
− xTw(i)

)2

. (177)

It seems natural to add this measure as a penalty term to the local loss

function in (102), resulting in the new loss function

Li

(
w(i)

)
:=(1/mi)

∥∥y(i)−X(i)w(i)
∥∥2

2︸ ︷︷ ︸
training error

+ρ (1/
∣∣D(i)

t

∣∣)∑
x∈D(i)

t

(
u(i)

(
x
)
−xTw(i)

)2
︸ ︷︷ ︸

subjective explainability

.

(178)

The regularization parameter ρ controls the preference for a high subjective

explainability of the hypothesis h(i)(x) =
(
w(i)

)T
x over a small training

error [131]. It can be shown that (178) is the average weighted squared error

loss of h(i)(x) on an augmented version of D(i). This augmented version

includes the data point
(
x, u(i)(x)

)
for each data point x in the test-set D(i)

t .

So far, we have focused on the problem of explaining (the predictions of) a

trained personalized model to some user. The general idea is to provide partial

information, in the form of some explanation, about the learned hypothesis

map ĥ. Explanations should help the user to anticipate the prediction ĥ(x)

for any given data point. Instead of explaining a given trained model ĥ, it

might be more useful to explain an entire FL algorithm.

Mathematically, we can interpret an FL algorithm as a map A that reads

in local datasets and delivers learned hypothesis maps ĥ(i). We can explain

an FL algorithm by providing partial information about this map A. Thus,

mathematically speaking, the problem of explaining a learned hypothesis is

179

essentially the same as the problem of explaining an entire FL algorithm:

Provide partial information about a map such that the user can anticipate the

results of applying the map to arbitrary arguments. However, a description of

the map A is typically more complex, in a quantitative sense, than a learned

hypothesis map.

The different complexity levels of maps to be explained requires different

forms of explanation. For example, we could explain an FL algorithm using

a pseudo-code such as Algorithm 4. Fig. 8.3 illustrates another form of

explanation, i.e., a code fragment written in the programming language

Python.

180

1 from sklearn.datasets import load_iris

2 from sklearn.model_selection import train_test_split

3 from sklearn.tree import DecisionTreeClassifier

4 from sklearn.metrics import accuracy_score

5

6 # Load the Iris dataset

7 data = load_iris ()

8 X = data.data

9 y = data.target

10

11 # Split the dataset into training and test sets

12 X_train , X_test , y_train , y_test = train_test_split(X, y,

test_size =0.3, random_state =42)

13

14 # Create a Decision Tree classifier

15 clf = DecisionTreeClassifier(random_state =42)

16

17 # Train the classifier

18 clf.fit(X_train , y_train)

19

20 # Make predictions on the test data

21 y_pred = clf.predict(X_test)

22

23 # Calculate accuracy

24 accuracy = accuracy_score(y_test , y_pred)

25 accuracy

Fig. 8.3. Python code for a ML method that trains a decision tree on the Iris

dataset.

181

8.5 Diversity, Non-Discrimination and Fairness

“...we must enable inclusion and diversity throughout the entire AI system’s

life cycle...this also entails ensuring equal access through inclusive design

processes as well as equal treatment.” [104, p.18].

The local datasets used for the training of local models should be carefully

selected to not enforce existing discrimination. In a health-care application,

there might be significantly more training data for patients of a specific gender,

resulting in models that perform best for that specific gender at the cost of

worse performance for the minority [124, Sec. 3.3.].

Fairness is also important for ML methods used to determine credit score

and, in turn, if a loan should be granted or not [132]. Here, we must ensure

that ML methods do not discriminate against customers based on ethnicity

or race. To this end, we could augment data points by modifying any features

that mainly reflect the ethnicity or race of a customer (see Fig. 8.4).

182

gender x

compensation y
h(x)

original training set D
augmented

Fig. 8.4. We can improve the fairness of a ML method by augmenting the

training set using perturbations of an irrelevant feature such as the gender

of a person for which we want to predict the adequate compensation as the

label.

8.6 Societal and Environmental Well-Being

“...Sustainability and ecological responsibility of AI systems should be encour-

aged, and research should be fostered into AI solutions addressing areas of

global concern, such as for instance the Sustainable Development Goals.” [104,

p.19].

Society. FL systems might be used to deliver personalized recommen-

dations to users within a social media application (social network). These

recommendations might be (fake) news used to boost polarization and, in the

extreme case, social unrest [133].

Environment. Chapter 5 discussed FL algorithms that were obtained by

applying gradient-based methods to solve GTVMin. These methods require

computational resources to compute local updates for model parameters

183

and to share them across the edges of the FL network. Computation and

communication require energy which should be generated in an environmental-

friendly fashion [134].

184

8.7 Exercises

8.1. Robustness of GTVMin. Discuss the robustness of GTVMin (51)

for training local linear models. In particular, which attack is more effective

(detrimental): perturbing the labels, the features of data points in the local

datasets or perturbing the FL network, e.g., by removing (or adding) edges.

8.2. Subjectively Explainable FL. Consider GTVMin (51) to train local

linear models with model parameters w(i). The local datasets are modelled

as (59). Each local model has a user that is characterized by the user signal

u(x) := xTu(i). To ensure subjective explainability of local model with model

parameters w(i) we require the deviation (1/mi)
∥∥∥X̃(i)

(
w(i) − u(i)

)∥∥∥2

2
to be

sufficiently small. Here, we used the feature matrix X̃(i) obtained from the

realization of mi i.i.d. RVs with common probability distribution N (0, I).

We then add this deviation to the local loss functions resulting in using the

augmented loss function (178) used in (51). Study, either analytically or by

numerical experiments, the effect of varying levels of explainability (via the

parameter ρ in (178)) on the estimation error ŵ(i) −w(i).

185

9 Privacy Protection in FL

The core idea of FL is to share information contained in collections of local

datasets to improve the training of personalized ML models. Chapter 5 dis-

cussed FL algorithms that share information in the form of model parameters

that are computed from the local loss function. Each node i ∈ V receives the

current model parameters of other nodes and, after executing a local update,

shares its new model parameters with other nodes.

Depending on the design choices for GTVMin-based methods, sharing

model parameters allows to reconstruct local loss functions and, in turn, to

estimate private information about individual data points which represent

human patients [135]. Thus, the bad news is that FL systems will almost

inevitably incur some leakage of private information. The good news is,

however, that the extent of privacy leakage can be controlled by (i) careful

design choices for GTVMin and (ii) applying modifications to basic FL

algorithms from Chapter 5.

This chapter revolves around two main questions:

• How can we measure privacy leakage in an FL system?

• How can we control (minimize) privacy leakage of an FL system?

Section 9.1 addresses the first question while Sections 9.2 and 9.3 address the

second question.

9.1 Measuring Privacy Leakage

Consider an FL system designed to train personalized models for users indexed

by i = 1, . . . , n, each equipped with a heart rate sensor. Every user i generates

186

a local dataset D(i), consisting of time-stamped heart rate measurements. A

single data point corresponds to one physical activity, such as a 50-minute run.

The features of such a data point include a time series of GPS coordinates,

while the label may be the average heart rate recorded during the activity.

We assume that this average heart rate is private and should not be disclosed

to third parties.30

To enhance learning, the FL system incorporates expert-provided infor-

mation in the form of pairwise similarity scores Ai,i′ between users i and i′,

based on characteristics such as body weight and height. These similarity

scores are used to regularize the learning process.

Using an FL algorithm—such as Algorithm 4—we aim to learn, for each

user i, personalized model parameters w(i) for an AI-powered healthcare

assistant [136]. This algorithm can be represented as a map A(·) that takes

as input the collection of local datasets

D :=
{
D(i)

}n

i=1

and delivers learned model parameters

A(D) :=
(
ŵ(1), . . . , ŵ(n)

)
.

Figure 9.1 illustrates the mapping from local datasets to learned model

parameters that is implemented by an FL algorithm.

A privacy-preserving FL system should not allow to infer, solely from the

learned model parameters, the average heart rate y(i,r) during a specific single

activity r of a specific user i. Mathematically, we must ensure that the map
30For instance, individuals may not wish to share heart rate profiles with potential

employers.

187

D(i)

D

ŵ(1), . . . , ŵ(n)A

Fig. 9.1. A FL algorithm maps the local datasets D(i) to the learned model

parameters ŵ(i), for i = 1, . . . , n.

A is not invertible: The learned model parameters (or hypothesis) should

not change if we were to apply the FL algorithm to a perturbed dataset that

includes a different value for the average heart rate y(i,r).

Figure 9.2 depicts the decision regions of a decision tree. This decision

tree has been trained by (approximately) solving ERM with a training set

that consists of four data points. Each data point is characterized by a feature

vector x(r) =
(
x
(r)
1 , x

(r)
2

)T and a binary label y(r) ∈ {◦,×}, for r = 1, . . . , 5. If

an attacker would know the label values of x(1),x(4), it could infer the label

of x(2) based on the decision regions.

The sole requirement for an FL algorithm A to be not invertible is not

sufficient in general. Indeed, we can easily make any algorithm A by simple

pre- or post-processing techniques whose effect is limited to irrelevant regions

of the input space. Note that the input space is the space of all possible

datasets. The level of privacy protection offered by A can be characterized

by a measure of its non-invertibility (or non-injectivity).

A simple measure of non-invertibility is the sensitivity of the output A
(
D
)

188

0 1 2 3 4 5
0

1

2

3

4

5

x(1) x(2)

x(3)

x(4)

x(5)

x1

x2

Fig. 9.2. Scatterplot of a dataset used to train a decision tree. We indicate

the decision regions along with the labels of data points (via their markers).

T

p(ŵ;D)

ŵ

p(ŵ;D′)

Fig. 9.3. Probability distributions of the learned model parameters ŵ =(
ŵ(1), . . . , ŵ(n)

)
delivered by some FL algorithm for two different input

datasets, denoted by D′ and D.

189

against varying the heart rate value y(i,r),∥∥A(
D
)
−A

(
D′)∥∥

2

ε
. (179)

Here, D denotes some given collection of local datasets and D′ is a modified

dataset. In particular, D′ is obtained by replacing the actual average heart

rate y(i,r) with the modified value y(i,r) + ε. The privacy protection offered

by A is higher for smaller values (179), i.e., the output changes only a little

when varying the value of the average heart rate.

Another measure for the non-invertibility of A is referred to as DP. This

measure is particularly useful for stochastic algorithms that use some random

mechanism for learning model parameters. One example of such a mechanism

is the random selection of a subset data points that form a batch within one

iteration of FedSGD (see Algorithm 7). Section 9.2 discusses another example

of a random mechanism: add the realization of a RV to the intermediate

results of an algorithm.

A stochastic algorithm A can be described by a probability distribution

p(ŵ;D) over the possible values of the learned model parameters ŵ. Figure

9.3 illustrates a stochastic algorithm along with the associated probability

distribution p(ŵ;D).31 This probability distribution is parametrized by the

dataset D that is fed as input to the algorithm A. Figure 9.3 depicts the

probability distributions of an algorithm for two different choices D,D′ of the

input dataset.

DP measures the non-invertibility of a stochastic algorithm A via the

similarity of the probability distributions obtained for two datasets D,D′ that
31For more details about the concept of a measurable space, we refer to the literature

[28,137,138].

190

are considered as adjacent (or neighbouring) [124,139]. Typically, we consider

D′ as adjacent to D if it is obtained by modifying the features or label of a

single data point in D.

As a case in point, consider data points representing physical activities

which are characterized by a binary feature xj ∈ {0, 1} that indicates an

excessively high average heart rate during the activity. We could then define

neighbouring datasets by changing the feature xj of a single data point. In

general, the notion of neighbouring datasets is a design choice used in the

definition of quantitative measures for privacy protection. A FL algorithm

ensures privacy protection if there is no statistical test that allows to reliably

distinguish between neighbouring input datasets. Figure 9.3 illustrates the

acceptance region T that defines a statistical test.

The de-facto standard for quantifying privacy leakage in ML and FL

systems is the following definition.

Definition 1. (from [139]) A stochastic algorithm A is (ε, δ)-DP if, for any

two neighbouring datasets D,D′,

Prob
{
A(D) ∈ S

}
≤ exp(ε)Prob

{
A(D′) ∈ S}+ δ

holds for every measurable set S.

Definition 1 formalizes the notion that the presence or absence of an

individual data point (representing, e.g., human individual) in a dataset D

should not significantly affect the probability distribution of the output A(D).

The notion of (ε, δ)-DP is widely adopted in FL applications [139–142]. The

U.S. Census Bureau adopted (ε, δ)-DP for the 2020 census [142]. The National

Institute of Standards and Technology (NIST) has published some guidance

191

for evaluating and implementing DP mechanisms in government and industry

settings [143].

Besides (ε, δ)-DP, there are have also been prosed other measures for

privacy leakage. These measures differ by how they quantify precisely the

similarity between probability distributions p(ŵ;D) and p(ŵ;D′) induced

by neighbouring datasets [144]. One such alternative measure is the Rényi

divergence of order α > 1,

Dα

(
p(ŵ;D)

∥∥p(ŵ;D′)

)
:=

1

α− 1
Ep(ŵ;D′)

[(
dp(ŵ;D)

dp(ŵ;D′)

)α]
.

The Rényi divergence allows to define the following variant of DP [144,145].

Definition 2. (from [139]) An algorithm A is (α, γ)-RDP if, for any two

neighbouring datasets D and D′,

Dα

(
p(ŵ;D)

∥∥p(ŵ;D′)

)
≤ γ.

A recent use-case of (α, γ)-RDP is the analysis of DP guarantees offered

by variants of SGD [144]. This analysis uses the fact that (α, γ)-RDP implies

(ε, δ)-DP for suitable choices of ε, δ [144].

One important property of the DP notions in Definition 1 and Definition

2 is that they are preserved by post-processing:

Proposition 9.1. Consider an FL system A that is applied to some dataset

D and some (possibly stochastic) map B that does not depend on D. If A is

(ε, δ)-DP (or (α, γ)-RDP), then so is also the composition B ◦ A.

Proof. See, e.g., [139, Sec. 2.3].

192

According to Proposition (9.1), the level of DP offered by an algorithm A

does not deteriorate by any post-processing of its output. It seems almost

natural to make this immunity against post-processing a defining property

of any useful notion of DP [145]. However, due to Proposition (9.1), this

property is already “built-in” into the Definition 1 and Definition 2.

Operational Meaning of DP. The mathematically precise formulation

of DP in Definition 1 is somewhat abstract. It is instructive to interpret

(ε, δ)-DP from the perspective of hypothesis testing [143]: We use the output

ŵ ∈ Rd of algorithm A to test if the underlying dataset fed into A was D or

if it was a neighbouring dataset D′ [146]. Such a statistical test uses a region

T ⊆ Rd and to declare

• “dataset D seems to be used” if ŵ ∈ T , or

• “dataset D′ seems to be used” if ŵ /∈ T .

The performance of a test T is characterized by two error probabilities:

• The probability of declaring D′ but actually D was fed into A, which is

PD→D′ := 1−
∫
T p(ŵ;D).

• The probability of declaring D but actually D′ was fed into A, which is

PD′→D :=
∫
T p(ŵ;D′).

For a privacy-preserving algorithm A, there should be no test T for which

both PD→D′ and PD′→D are simultaneously small (close to 0). This intuition

can be made precise as follows (see [147, Thm. 2.1.], [143] or [148]): If an

algorithm A is (ε, δ)-DP, then

exp(ε)PD→D′ + PD′→D ≥ 1− δ. (180)

193

Thus, if A is (ε, δ)-DP with a small ε, δ (close to 0), then (180) implies

PD→D′ + PD′→D ≈ 1.

9.2 Ensuring Differential Privacy

Depending on the underlying local datasets, local models, and optimization

method, a GTVMin-based method A might already ensure DP by design. A

basic means of ensuring DP is through careful feature selection (or learning)

for the local datasets (see Figure 9.5. Random sampling used by SGD-based

algorithms can also provide a certain level of DP [149,150].

According to Proposition 9.1, DP can also be actively ensured by applying

pre- and post-processing techniques to the input and output of an FL algorithm

A. Mathematically, the map A is concatenated with the maps I and O. These

maps represent the pre- and post-processing and are typically stochastic, i.e.,

defined by a conditional probability distribution. The concatenation results

in a new algorithm A′ := O ◦ A ◦ I. In summary, for a given dataset D, the

new (privacy-enhanced) algorithm A′ produces learned model parameters by:

• apply the pre-processing I(D),

• compute A
(
I(D)

)
using the original algorithm,

• and finally apply the post-processing O
(
A
(
I(D)

))
, yielding A′(D).

Post-Processing. Maybe the most widely used post-processing technique

for DP is to add some noise [139],

O(A) := A+ n, with noise n =
(
n1, . . . , nnd

)T , n1, . . . , nnd
i.i.d.∼ p(n). (181)

194

Note that the post-processing (181) is parametrized by the choice of the

probability distribution p(n) of the noise entries. Two important choices are

the Laplacian distribution p(n) := 1
2b
exp

(
− |n|

b

)
and the normal distribution

p(n) := 1√
2πσ2

exp
(
− n2

2σ2

)
(i.e., using Gaussian noise n ∼ N (0, σ2)).

When using Gaussian noise n ∼ N (0, σ2) in (181), the variance σ2 can be

chosen based on the sensitivity

∆2

(
A
)
:= max

D,D′
∥A(D)−A(D′)∥2 . (182)

Here, the maximum is over all pairs of neighbouring datasets D,D′. Adding

Gaussian noise with variance σ2 >
√
2 ln(1.25/δ) ·∆2(A)/ε ensures that A is

(ε, δ)-DP [139, Thm. 3.22]. It might be difficult to evaluate the sensitivity

(182) for a given FL algorithm A [151]. For a GTVMin-based method, i.e.,

A(D) is a solution to (49), we can upper bound ∆2

(
A
)

via a perturbation

analysis similar in spirit to the proof of Proposition 8.1.

Pre-Processing. Instead of ensuring DP via post-processing the output

of an FL algorithm A, we can ensure DP by applying a pre-processing map

I(D) to the dataset D. The result of the pre-processing is a new dataset

D̂ = I(D) which can be made available (publicly!) to any algorithm A that

has no direct access to D. According to Proposition 9.1, as long as the pre-

processing map I is (ε, δ)-DP (see Definition 1), so will be the composition

A ◦ I.

As for post-processing, one important approach to pre-processing is to “add”

or “inject” noise. This results in a stochastic pre-processing map D̂ = I(D)

that is characterized by a probability distribution. The noise mechanisms

used for pre-processing might be different from just adding the realization of

195

a RV (see (181)): 32

• For a classification method with a discrete label space Y = {1, . . . , K},

we can inject noise by replacing the true label of a data point with a

randomly selected element of Y [152, Mechanism 1]. The noise injection

might also include the replacement of the features of a data point by a

realization of a RV whose probability distribution is somehow matched

to the dataset D [152, Mechanism 2].

• Another form of noise injection is to construct I(D) by randomly

selecting data points from the original (private) dataset D [153]. Note

that such noise injection is naturally provided by SGD methods (see,

e.g., step 4 of Algorithm 6).

How To Be Sure? Consider some algorithm A, possibly obtained by pre-

and post-processing techniques, that is claimed to be (ε, δ)-DP. In practice, we

might not know the detailed implementation of the algorithm. For example,

we might not have access to the noise generation mechanism used in the pre-

or post-processing steps. How can we verify a claim about DP of algorithm

A without having access to the detailed implementation of A? One approach

could be to apply the algorithm to synthetic datasets D(1)
syn, . . . ,D(L)

syn that

differ only in some private attribute of a single data point. We can then

try to predict the private attribute s(r) of the dataset D(r)
syn by applying a

learned hypothesis ĥ to the output A
(
D(r)

syn

)
delivered by the algorithm under

test A. The hypothesis ĥ might be learned by an ERM-based method (see
32Can you think of a simple pre-processing map that is deterministic and guarantees

maximum DP?

196

Algorithm 1) using a training set consisting of pairs
(
A
(
D(r)

syn

)
, s(r)

)
for some

r ∈ {1, . . . , L}.

9.3 Private Feature Learning

Section 9.2 discussed pre-processing techniques that ensure DP of an FL

algorithm. We next discuss pre-processing techniques that are not directly

motivated from a DP perspective. Instead, we cast privacy-friendly pre-

processing of a dataset as a feature learning problem [23, Ch. 9].

Consider a data point characterized by a feature vector x ∈ Rd and a label

y ∈ R. Moreover, each data point is characterized by a private attribute s.

We want to learn a (potentially stochastic) feature map Φ : Rd → Rd′ such

that the new features z = Φ(x) ∈ Rd′ do not allow to accurately predict the

private attribute s. Trivially, we can make the accurate prediction of s from

Φ(x) impossible by using a constant map, e.g., Φ(x) = 0. However, we still

want the new features z = Φ(x) to allow for a sufficiently accurate prediction

(using a suitable hypothesis) of the label y.

Privacy Funnel. To quantify the predictability of the private attribute s

solely from the transformed features z = ϕ(x) we can use the i.i.d. assumption

as a simple but useful probabilistic model. Indeed, we can then use the MI

I (s;Φ(x)) as a measure for the predictability of s from Φ(x). A small value

of I (s;Φ(x)) indicates that it is difficult to predict the private attribute s

solely from Φ(x), i.e., a high level of privacy protection.33 Similarly, we can

use the MI I (y;Φ(x)) to measure the predictability of the label y from Φ(x).
33The relation between MI-based privacy measures and DP has been studied in some

detail recently [154].

197

I (y;Φ(x))

I
(s
;Φ

(x
))

Fig. 9.4. The solutions of the privacy funnel (183) trace out (for varying

constraint R) a curve in the plane spanned by the values of I (s;Φ(x))

(measuring the privacy leakage) and I (y;Φ(x)) (measuring the usefulness of

the transformed features for predicting the label).

A large value I (y;Φ(x)) indicates that Φ(x) allows to accurately predict y

(which is of course preferable).

It seems natural to use a feature map Φ(x) that optimally balances a

small I (s;Φ(x)), i.e., a sufficiently large privacy protection, with a sufficiently

large I (y;Φ(x)) to allow for an accurate prediction of y. The mathematically

precise formulation of this plan is known as the privacy funnel [155, Eq. (2)],

min
Φ(·)

I (s;Φ(x)) such that I (y;Φ(x)) ≥ R. (183)

Figure 9.4 illustrates the solution of (183) for varying R, i.e., the minimum

value of I (y;Φ(x)).

Optimal Private Linear Transformation. The privacy funnel (183)

uses the MI I (s;Φ(x)) to quantify the privacy leakage of a feature map Φ(x).

An alternative measure for the privacy leakage is the minimum reconstruction

198

error s− ŝ. The reconstruction ŝ is obtained by applying a reconstruction map

r(·) to the transformed features Φ(x). If the joint probability distribution

p(s,x) is a multivariate normal distribution and the Φ(·) is a linear map (of

the form Φ(x) := Fx with some matrix F), then the optimal reconstruction

map is again linear [30].

We would like to find the linear feature map Φ(x) := Fx such that for any

linear reconstruction map r (resulting in ŝ := rTFx) the expected squared

error E{(s− ŝ)2} is large. The smallest possible expected squared error loss

ε(F) := min
r∈Rd′

E{(s− rTFx)2}

measures the level of privacy protection offered by the new features z = Fx.

The larger the value ε(F), the more privacy protection is offered. It can

be shown that ε(F) is maximized by any F that is orthogonal to the cross-

covariance vector cx,s := E{xs}, i.e., whenever Fcx,s = 0. One specific choice

for F that satisfies this orthogonality condition is

F = I− (1/ ∥cx,s∥22)cx,sc
T
x,s. (184)

Figure 9.5 illustrates a dataset for which we want to find a linear feature map

F such that the new features z = Fx do not allow to accurately predict a

sensitive attribute.

199

food preference y

f

gender s

x1

x2

Fig. 9.5. A toy dataset D whose data points represent customers, each

characterized by features x =
(
x1, x2

)T . These raw features carry information

about a sensitive attribute s (gender) and the label y (food preference) of

a person. The scatterplot that we can find a linear feature transformation

F := fT ∈ R1×2 resulting in a new feature z := Fx that does not allow to

predict s, while still allowing to predict y.

200

9.4 Exercises

9.1. Where is Alice? Consider a device, named Alice, that implements an

asynchronous variant of Algorithm 5 (see (129) and (130)). The local dataset

of the device consists of temperature measurements obtained from some FMI

weather station. Assuming that no other device interacts with Alice except

for your device, named Bob. Develop a software for Bob that interacts with

Alice, according to (129), in order to determine at which FMI station we can

find Alice.

9.2. Linear discriminant analysis with privacy protection. Consider

a binary classification problem with data points characterized by a feature

vector x ∈ Rd and a binary label y ∈ {−1, 1}. Each data point has a

sensitive attribute s = Fx, obtained by applying a fixed matrix F to the

feature vector x. We use a probabilistic model - interpreting data points (x, y)

as i.i.d. realizations of a RV - with the feature vector having multivariate

normal distribution N
(
µ(y),C(y)

)
conditioned on y. The label is uniformly

distributed over the label space {−1, 1}. Try to find a vector a such that the

transformed feature vector z′ := aTx optimally balances the privacy leakage

(information carried by z′ about s) with the information carried by z′ about

the label y.

9.3. Where Are You? Consider a social media post of a friend that is

travelling across Finland. This post includes a snapshot of a temperature

measurement and a clock. Can you guess the latitude and longitude of the

location where your friend took this snapshot? We can use ERM to do this:

Use Algorithm 1 to learn a vector-valued hypothesis ĥ for predicting latitude

and longitude from the time and value of a temperature measurement. Use

201

the weather recordings at FMI stations to construct a training set and a

validation set.

9.4. Ensuring Privacy with Pre-Processing. Repeat the privacy attack

described in Exercise 9.3 but this time using a pre-processed version of the raw

data. The pre-processing can be implemented either via randomly selecting a

subset of data points in the raw dataset or by adding noise to their features

and labels. How well can one predict the latitude and longitude from the

time and value of a temperature measurement using a hypothesis ĥ learned

from the perturbed data?

9.5. Private Feature Learning. Download hourly weather observations

during April 2023 at FMI station Kustavi Isokari. You can access these obser-

vations here https://en.ilmatieteenlaitos.fi/download-observations.

Each time period of one hour corresponds to a data point that is characterized

by the following features:

• x1 = Average temperature [°C]

• x2 = Maximum temperature [°C]

• x3 = Minimum temperature [°C]

• x4 = Average relative humidity [%],

• x5 = Wind speed [m/s],

• x6 = Maximum wind speed [m/s],

• x7 = Average wind direction [°],

• x8 = Maximum gust speed [m/s],

202

https://en.ilmatieteenlaitos.fi/download-observations

• x9 = Precipitation [mm],

• x10 = Average air pressure [hPa]

• x11 = hour of the day (1, . . . , 24).

The goal of this exercise is to learn a linear feature transformation z = Fx

such that the new features do not allow to recover the hour of the day x11

(which is considered a private attribute s of the data point). However the

new features should still allow to reconstruct the average temperature x1.

We construct the matrix F according to (184) by replacing the exact

cross-covariance vector cx,s with an estimate (or approximation) ĉx,s. This

estimate is computed as follows:

1. read all data points and construct a feature matrix X ∈ Rm×11 with m

being the total number of data points

2. remove the sample means from each feature, resulting in the centred

feature matrix

X̂ := X− (1/m)11TX , 1 :=
(
1, . . . , 1

)T ∈ Rm.

3. extract the sensitive attribute or each data point and store it in the

vector

s :=
(
x̂
(1)
1 , x̂

(2)
1 , . . . , x̂

(m)
1

)T
.

4. compute the empirical cross-covariance vector

ĉx,s := (1/m)
(
X̂
)T

s

203

The matrix F obtained from (184) by replacing cx,s with ĉx,s, is then used

to compute the privacy-preserving features z(r) = Fx(r) for r = 1, . . . ,m.

To verify if these new features are indeed privacy-preserving, we use linear

regression (as implemented by the LinearRegression class of the Python

package scikit-learn) to learn the model parameters of a linear model to

predict the sensitive attribute s(r) = x
(r)
1 (the hour of the day during which

the measurement has been taken) from the features z(r).

204

10 Cybersecurity in FL: Attacks and Defenses

FL, like ML more broadly, fundamentally relies on externally provided data.

In most ML applications, the computational device that trains a model rarely

has direct access to the raw data points of the training set. Instead, training

often proceeds on pre-processed data supplied by external sources or curated

databases.

As a case in point, consider an ML application for animal health-care

based on monitoring livestock in remote regions. Direct access to raw data

points, such as those depicted in Figure 10.1, would require physically visiting

distant pastures with specialized measurement equipment such as stomach

sensors. Instead, developers typically rely on external databases assembled

by researchers or veterinarians who collected the data on-site.

Fig. 10.1. In many ML applications, such as monitoring livestock in remote

regions, direct access to raw data points is impractical. ML methods often

rely on external databases curated by third parties, introducing potential

vulnerabilities.

This reliance on external data is even more pronounced in FL systems.

One of the primary purposes of FL is to leverage the information contained in

205

the local datasets of many interconnected devices, which form a FL network.

However, this raises a critical question: How can we be confident that every

device behaves as intended and faithfully follows the agreed-upon FL algorithm?

Except in the rare case where we have full control over every device in

the FL network, it is essential to design FL systems that are robust against

potential attacks. Here, an attack refers to the intentional perturbation (or

manipulation) of FL system parts.

This chapter is structured as follows: Section 10.1 discusses how such

attacks can be carried out by perturbing different components of an FL system.

Section 10.2 distinguishes different attack types according to their objectives.

Section 10.3 provides some guidance on the design choices for GTVMin-based

methods to ensure robustness against attacks.

10.1 A Simple Attack Model

Consider an FL system that implements one of the FL algorithms discussed

in Chapter 5. As discussed in Section 5.7, these algorithms share a common

form. Many widely-used FL algorithms for parametric local models (with

model parameters belonging to Rd) compute and share the results (across the

edges of the FL network) of local updates

w(i,k+1) = argmin
w(i)∈Rd

Li

(
w(i)

)
+

∑
i′∈N (i)

Ai,i′ϕ
(
w(i′,k) −w(i,k)

) . (185)

206

D(i)

(185) w(i,k+1)

device i

Li (·)

w(i′,k)
i′ ∈ N (i)

Fig. 10.2. A GTVMin-based FL system from the perspective of a specific

device i.

During time-instant k, device i solves (185) in order to obtain new model

parameters w(i,k+1). Carefully note that update (185) involves the model

parameters w(i′,k) at neighbors i′ ∈ N (i′). In practice, these model parameters

need to be communicated over some physical channel (e.g., a short-range

wireless link) between device i and device i′. Figure 10.2 illustrates the

information flow during the local update (185).

From the viewpoint of a specific device i, control is typically limited to the

local loss function Li

(
w(i)

)
, which is often computed as the average loss over

the local dataset.34 In contrast, the model parameters w(i′,k) received from

neighbouring devices may be unreliable: they can be intentionally perturbed

(or poisoned). In what follows, we describe two major classes of attacks that

exploit different parts of the FL system to manipulate the shared model

parameters w(i′,k) and thereby influence the local update step (185).
34This assumption may not always hold in practice—for instance, the FL application

might not be granted full access to the operating system of device i (e.g., a smartphone).

207

10.1.1 Model Poisoning

If an attacker has control over some of the communication links within an

FL system, it can directly manipulate the model parameters shared between

nodes. A model poisoning attack on the update (185) replaces the vector

w(i′,k), for some i′ ∈ N (i) with a perturbed vector w̃(i′,k). We have already

discussed the robustness of the update (185), for specific choices of ϕ, against

perturbations in Section 8.2.3.

10.1.2 Data Poisoning

Consider an attacker with access to the local datasets of a subset of de-

vices W ⊂ V in the FL network. By poisoning the local datasets at these

compromised nodes, the attacker can manipulate the corresponding local

updates (185). Protecting a given device i from such poisoning is non-trivial,

especially when the attacker can exploit software vulnerabilities, such as those

in smartphone operating systems [156].

The impact of the poisoned updates propagates from nodes i′ ∈ W through

the edges of the FL network during successive update steps. As a result, even

nodes whose local datasets remain clean can eventually be affected – provided

they are connected to W. In fact, if the FL network G is connected, the

influence of poisoned updates can reach all nodes within a number of steps

proportional to the graph’s diameter.

Figure 10.3 illustrates this phenomenon in a chain-structured FL network

with three nodes i = 1, 2, 3 connected by unit-weight edges E = {1, 2}, {2, 3}.

The attacker poisons the local dataset D(1) at node i = 1 at time k − 1,

resulting in a perturbed update at time k. This perturbation influences node

208

i = 2 at time k + 1, and subsequently node i = 3 at time k + 2. The affected

updates are marked by a red star (∗) in Figure 10.3.

k k+1 k+2

1

2

3

* *

*

*

*

*

Fig. 10.3. Propagation of the effect of a data poisoning attack that perturbs

the update (185) of i = 1 during time k.

Data poisoning can consist of adding the realization of RVs to the features

and label of a data point: We poison a data point by replacing its features x

and label y with x̃ := x+∆x and ỹ = y +∆y.

For FL applications with local models being used for classification of data

points with a discrete label (or category), we further distinguish between the

following data poisoning strategies [157]:

• Label Poisoning. The attacker manipulates the labels of data points

in the training set.

• Clean-Label attack. The attacker leaves the labels untouched and

only manipulates the features of data points in the training set.

The effect data poisoning is that the original local loss functions Li (·)

in GTVMin (51) are replaced by perturbed local loss functions L̃i (·). The

degree of perturbation depends on the fraction of poisoned data points as

well as the choice of the loss function used to measure the prediction error.

209

Different loss functions provide varying levels of robustness against data

poisoning. For example, using the absolute error loss yields increased robust-

ness against perturbations of the label values of a few data points, compared

to the squared error loss (see Exercise 10.4). Another class of robust loss

functions is obtained by including a penalty term (as in regularization).

10.2 Attack Types

Based on their objective, we distinguish the following attacks on FL systems:

denial-of-service attacks, backdoor attacks and privacy (or model inversion)

attacks [158].

• Denial-of-service attack. A denial-of-service attack manipulates

w(i′,k) in (185) to nudge the updates w(i,k+1) towards model parameters

w(i) with a large local loss. In other words, the resulting hypothesis h̄(i)

delivers poor predictions for the data points in the local dataset D(i)

(see Figure 10.4) [159].

• Backdoor attack. This attack manipulates w(i′,k) in (185) to nudge

the updates w(i,k+1) towards model parameters w̃(i) with a small loss

on the local dataset but highly irregular predictions for specific feature

vectors. In other words, the hypothesis h̃(i) “behaves well” on D(i) but

delivers pre-specified predictions on a subset K ⊆ X of the feature space.

We can interpret the subset K as a backdoor which is opened by any

data point with a feature vector x ∈ K (see Figure 10.4) [160].

• Privacy (or model inversion) attack. This attack manipulates w(i′,k)

in (185) such that the updates w(i,k+1) maximally leak information about

210

features x

label y
ĥ(i)(x) (no attack)

h̄(i)(x) (denial-of-service attack)

h̃(i)(x) (backdoor attack)

“backdoor"

local dataset D(i)

Fig. 10.4. A local dataset D(i) along with three hypothesis maps learned via

iterating (185) under three attack scenarios.

sensitive attributes of data points stored at device i. One approach is

to force another device i′ to learn a copy of model parameters w(i) by

designing trivial local loss functions and manipulating the structure of

the FL network (see Exercise 9.1). Once obtained, the copied model

parameters can be probed to reveal private information. A notable

class of privacy attacks is model inversion, where an attacker tries to

reconstruct feature vectors of data points [161].

211

10.3 Making FL Robust Against Attacks

We next discuss how to make the update (185) more robust against the attacks

discussed in Section 10.2. Our focus will be on GTVMin-based methods using

the GTV penalty ϕ(·) = ∥·∥22. For this choice, (185) can be written as (see

(171))

w(i,k+1) ∈ argmin
w(i)∈Rd

Li

(
w(i)

)
+ αd(i)

∥∥∥w(i) − ŵ(N (i))
∥∥∥2

2
,

with ŵ(N (i)) := (1/d(i))
∑

i′∈N (i)

Ai,i′w
(i′,k). (186)

Here, we used the weighted node degree d(i) =
∑

i′∈N (i) Ai,i′ (see (34)).

The update (186) can be attacked via manipulating the model parameters

w(i′,k) and, in turn, their average ŵ(N (i)). Consider an attack that perturbs up

to η · |N (i)| of these model parameters (see Figure 10.5). It turns out that an

effective defense against these perturbations is to replace the average by [162]

(1/d(i))
∑

i′∈N (i)

Ai,i′τ(w
(i′,k)), (187)

with some generalized threshold (or clipping) function τ . The literature on

robust FL has studied different constructions of τ [162,163]. Intuitively, the

threshold function τ should not change clean model parameters w(i′,k) but

also limit the impact of perturbed w(i′,k).

For the special case of model dimension, i.e., each local model is parametrized

by a single number w ∈ R, one useful choice for τ in (187) is

τ(w) =


τu for w ≥ τu

w for w ∈ [τl, τu]

a for w ≤ τl.

(188)

212

A natural choice for the thresholds τl, τu is to use order statistic of the values

w(i′,k), for i′ ∈ N (i). In particular, the upper threshold τu in (188) is chosen

such that it is exceeded by w(i′,k) only for a small number of neighbors

i′ ∈ N (i). The lower threshold τl in (188) is chosen analogously (see Figure

10.5). The robustness of using (188) in the averaging step (187) has been

studied recently in [162].

Another important choice for the threshold function τ in (187) is

τ(w) = c

w if w ∈ T

0 otherwise,

with c =
|N (i)|

|{i′ ∈ N (i) : w(i′,k) ∈ T }|
. (189)

Inserting (189) into (187) yields the trimmed mean [164]. Indeed, the effect

of (189) is that the average (187) is computed over a subset (or trimmed

version) T of w(i′,k), for i′ ∈ N (i). Different constructions for the subset T

in (189) have been studied in the literature on robust FL [165–167]. One

such construction is based on the order statistic of w(i′,k), for i′ ∈ N (i), by

excluding the most extreme values [168].

Note that (189) is defined for scalar model parameters w(i′,k) ∈ R (i.e.,

for local models with dimension d = 1). We can generalize (189) to higher

dimensions d > 1 by applying it separately to each entry w
(i,k)
1 , . . . , w

(i,k)
d

of the model parameters w(i,k). The robustness of GTVMin-based methods

using the averaging step (187) has been studied in [168].

So far, our discussion focused on protecting the update (186) (which is the

core step of GTVMin-based methods that use the GTV penalty ϕ(·) = ∥·∥22)

against denial-of-service attacks and backdoor attacks. We now discuss how

213

w(i′,k)

(a) Original (“clean”) model parameters.

w(i′,k)

τl

τu

(b) Poisoned model parameters.

Fig. 10.5. An attack on (185) perturbs (adversarially) a fraction η of the

received model parameters w(i′,k).

to protect (186) against privacy attacks.

For a fixed time k, we can ensure a prescribed level of DP by replacing

the update (186) with a noisy version

w(i,k+1) + σ · n(k), with scaled noise σ · n(k). (190)

This noisy update (190) is then shared with the neighbors i′ ∈ N (i). Any (or

even each) of these neighborss could be involved in a privacy attack that aims

to learn a sensitive attribute of the local dataset D(i).

The noise term n(k) in (190) is drawn independently for each time k from

a prescribed probability distribution, such as the Laplace distribution or the

normal distribution [139]. A key challenge for implementing (190) is to find

a useful choice for the noise strength σ. Increasing σ results in stronger

privacy protection but typically degrades the accuracy of the trained local

models [143]. However, choosing σ too small can result in insufficient privacy

214

protection.

The minimum value σ required to ensure (ε, δ)-DP (see Definition 1) with

prescribed values ε, δ ≥ 0 depends on

• how the shape of the local loss function Li (·) changes when data points

are added to (or removed from) the local dataset D(i) (see [169]),

• the value of the GTVMin parameter α,

• the number of time instants k during which the update (186) is executed

and the noisy result (190) shared with the neighbors [147,170].

215

10.4 Exercises

10.1. Model inversion for linear regression. Consider an ERM-based

method for training a linear model using plain GD. Assume that the model

parameters are initialized to zero, w(0) = 0 ∈ Rd, and that the training error

L̂(w) is the average squared error loss on a training set,

D =
{ (

x(1), y(1)
)
, . . . ,

(
x(m), y(m)

) }
.

Suppose an attacker can observe the sequence of gradients, ∇L̂
(
w(k)

)
com-

puted during the first few iterations k = 0, 1, To what extent is it possible,

based solely on the observed gradients and the knowledge of zero initialization,

to reconstruct the training set?

10.2. Denial-of-service attack. Construct an FL network of FMI stations

and store it as a networkx.Graph() object. Implement Algorithm 4 to learn,

for each node i = 1, . . . , n, the model parameters of a linear model. Launch a

denial-of-service attack by poisoning the local datasets at increasingly many

nodes i′ ̸= 1. The goal of the attack is to increase the validation error of the

learned model parameters w(1) (at target node i = 1) by 20 %.

10.3. A backdoor attack. We now use a different collection of features for

a data point (representing a temperature recording). In particular, we replace

the numeric feature representing the hour of the measurement with 24 new

features, stacked into the vector x′ =
(
x′
1, . . . , x

′
24

)T . These new features are

the one-hot encoding of the hour. For example, if the temperature recording

has been taking during hour 0 then x′
1 = 1, x′

2 = 0, Implement backdoor

attack using a specific hour, e.g., 03:00 - 04:00, as the key (or trigger).

10.4. Robust loss. Consider a ML application with data points characterized

216

by a single numeric feature x∈R and single numeric label y ∈ R. To predict

the label we train a linear model via ERM with two different choices for the

loss function. In particular, we learn a hypothesis h(1) via ERM with the

squared error loss and another hypothesis h(2) by ERM with the absolute

error loss. Try to find a training set, consisting of five data points such

that
(
x(5), y(5)

)
is located above the curve h(2) (in a scatterplot). Verify that

h(2) does not change at all when re-training the linear model on a modified

training set where the value y(5) is slightly perturbed.

217

References

[1] W. Rudin, Real and Complex Analysis, 3rd ed. New York: McGraw-Hill,

1987.

[2] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York:

McGraw-Hill, 1976.

[3] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed. Balti-

more, MD: Johns Hopkins University Press, 2013.

[4] G. Golub and C. van Loan, “An analysis of the total least squares

problem,” SIAM J. Numerical Analysis, vol. 17, no. 6, pp. 883–893, Dec.

1980.

[5] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial

communication: Automation networks in the era of the internet of things

and industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1,

pp. 17–27, 2017.

[6] M. Satyanarayanan, “The emergence of edge computing,” Computer,

vol. 50, no. 1, pp. 30–39, Jan. 2017. [Online]. Available: https:

//doi.org/10.1109/MC.2017.9

[7] H. Ates, A. Yetisen, F. Güder, and C. Dincer, “Wearable devices for the

detection of covid-19,” Nature Electronics, vol. 4, no. 1, pp. 13–14, 2021.

[Online]. Available: https://doi.org/10.1038/s41928-020-00533-1

[8] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The

industrial internet of things (iiot): An analysis framework,”

218

https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1038/s41928-020-00533-1

Computers in Industry, vol. 101, pp. 1–12, 2018. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0166361517307285

[9] S. Cui, A. Hero, Z.-Q. Luo, and J. Moura, Eds., Big Data over Networks,

2016.

[10] A. Barabási, N. Gulbahce, and J. Loscalzo, “Network medicine: a network-

based approach to human disease,” Nature Reviews Genetics, vol. 12,

no. 56, 2011.

[11] M. E. J. Newman, Networks: An Introduction. Oxford Univ. Press,

2010.

[12] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y.

Arcas, “Communication-Efficient Learning of Deep Networks from

Decentralized Data,” in Proceedings of the 20th International

Conference on Artificial Intelligence and Statistics, ser. Proceedings

of Machine Learning Research, A. Singh and J. Zhu, Eds.,

vol. 54. PMLR, 20–22 Apr 2017, pp. 1273–1282. [Online]. Available:

https://proceedings.mlr.press/v54/mcmahan17a.html

[13] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:

Challenges, methods, and future directions,” IEEE Signal Processing

Magazine, vol. 37, no. 3, pp. 50–60, May 2020.

[14] Y. Cheng, Y. Liu, T. Chen, and Q. Yang, “Federated learning for privacy-

preserving ai,” Communications of the ACM, vol. 63, no. 12, pp. 33–36,

Dec. 2020.

219

https://www.sciencedirect.com/science/article/pii/S0166361517307285
https://proceedings.mlr.press/v54/mcmahan17a.html

[15] N. Agarwal, A. Suresh, F. Yu, S. Kumar, and H. McMahan, “cpSGD:

Communication-efficient and differentially-private distributed sgd,” in

Proc. Neural Inf. Proc. Syst. (NIPS), 2018.

[16] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated

Multi-Task Learning,” in Advances in Neural Information Processing

Systems, vol. 30, 2017. [Online]. Available: https://proceedings.neurips.

cc/paper/2017/file/6211080fa89981f66b1a0c9d55c61d0f-Paper.pdf

[17] D. P. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:

Numerical Methods. Athena Scientific, 2015.

[18] M. van Steen and A. Tanenbaum, Distributed Systems, 3rd ed., Feb. 2017,

self-published, open publication.

[19] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.

Cambridge University Press, 2005.

[20] G. Strang, Computational Science and Engineering. Wellesley-

Cambridge Press, MA, 2007.

[21] G. Strang, Introduction to Linear Algebra, 5th ed. Wellesley-Cambridge

Press, MA, 2016.

[22] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone

Operator Theory in Hilbert Spaces. New York: Springer, 2011.

[23] A. Jung, Machine Learning: The Basics, 1st ed. Springer Singapore,

Feb. 2022.

220

https://proceedings.neurips.cc/paper/2017/file/6211080fa89981f66b1a0c9d55c61d0f-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6211080fa89981f66b1a0c9d55c61d0f-Paper.pdf

[24] N. Goodall, “Can you program ethics into a self-driving car?” IEEE

Spectrum, vol. 53, no. 6, pp. 28–58, June 2016.

[25] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,

no. 1, pp. 81–106.

[26] B. Schölkopf and A. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Cambridge, MA,

USA: MIT Press, Dec. 2002.

[27] A. Juditsky and A. Nemirovski, “First-order methods for nonsmooth

convex large-scale optimization, I: General purpose methods,” in Opti-

mization for Machine Learning, S. Sra, S. Nowozin, and S. Wright, Eds.

MIT press, 2011, pp. 121–147.

[28] P. Billingsley, Probability and Measure, 3rd ed. New York: Wiley, 1995.

[29] A. Jung, “An RKHS Approach to Estimation with Sparsity Constraints,”

Ph.D. dissertation, Vienna University of Technology, 2011, available

online: arXiv:1311.5768.

[30] E. L. Lehmann and G. Casella, Theory of Point Estimation, 2nd ed.

New York: Springer, 1998.

[31] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,

and S. Thrun, “Dermatologist-level classification of skin cancer with deep

neural networks,” Nature, vol. 542, 2017.

[32] H. Lütkepohl, New Introduction to Multiple Time Series Analysis. New

York: Springer, 2005.

221

[33] M. Wainwright, High-Dimensional Statistics: A Non-Asymptotic View-

point. Cambridge: Cambridge University Press, 2019.

[34] Y. SarcheshmehPour, Y. Tian, L. Zhang, and A. Jung, “Clustered fed-

erated learning via generalized total variation minimization,” IEEE

Transactions on Signal Processing, vol. 71, pp. 4240–4256, 2023.

[35] F. Chung, “Spectral graph theory,” in Regional Conference Series in

Mathematics, 1997, no. 92.

[36] D. A. Spielman, “Spectral and algebraic graph theory (incomplete draft),”

2025, version dated April 2, 2025. Available at http://cs-www.cs.yale.

edu/homes/spielman/sagt.

[37] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning, ser. Springer Series in Statistics. New York, NY, USA: Springer,

2001.

[38] A. Beck, First-Order Methods in Optimization. Philadelphia, PA, USA:

SIAM-Society for Industrial and Applied Mathematics, 2017.

[39] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends

in Optimization, vol. 1, no. 3, pp. 123–231, 2013.

[40] L. Condat, “A primal–dual splitting method for convex optimization

involving lipschitzian, proximable and linear composite terms,” Journal

of Opt. Th. and App., vol. 158, no. 2, pp. 460–479, Aug. 2013.

[41] R. Peng and D. A. Spielman, “An efficient parallel solver for SDD linear

222

http://cs-www.cs.yale.edu/homes/spielman/sagt
http://cs-www.cs.yale.edu/homes/spielman/sagt

systems,” in Proc. ACM Symposium on Theory of Computing, New York,

NY, 2014, pp. 333–342.

[42] N. K. Vishnoi, “Lx = b — Laplacian solvers and their algorithmic

applications,” Foundations and Trends in Theoretical Computer

Science, vol. 8, no. 1–2, pp. 1–141, 2012. [Online]. Available:

http://dx.doi.org/10.1561/0400000054

[43] D. Sun, K.-C. Toh, and Y. Yuan, “Convex clustering: Model,

theoretical guarantee and efficient algorithm,” Journal of Machine

Learning Research, vol. 22, no. 9, pp. 1–32, 2021. [Online]. Available:

http://jmlr.org/papers/v22/18-694.html

[44] K. Pelckmans, J. D. Brabanter, J. Suykens, and B. D. Moor, “Convex clus-

tering shrinkage,” in PASCAL Workshop on Statistics and Optimization

of Clustering Workshop, 2005.

[45] R. T. Rockafellar, Network Flows and Monotropic Optimization. Athena

Scientific, Jul. 1998.

[46] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, UK,

2004.

[47] D. P. Bertsekas, Network Optimization: Continuous and Discrete Models.

Athena Scientific, 1998.

[48] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learning,”

Artif. Intell. Rev., vol. 11, no. 1–5, pp. 11–73, Feb. 1997. [Online].

Available: https://doi.org/10.1023/A:1006559212014

223

http://dx.doi.org/10.1561/0400000054
http://jmlr.org/papers/v22/18-694.html
https://doi.org/10.1023/A:1006559212014

[49] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Convergence

and generalization in neural networks,” in Advances in Neural Information

Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates,

Inc., 2018. [Online]. Available: https://proceedings.neurips.cc/paper_

files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf

[50] S. S. Du, X. Zhai, B. Póczos, and A. Singh, “Gradient descent provably

optimizes over-parameterized neural networks,” in 7th International

Conference on Learning Representations, ICLR 2019, New Orleans,

LA, USA, May 6-9, 2019. OpenReview.net, 2019. [Online]. Available:

https://openreview.net/forum?id=S1eK3i09YQ

[51] W. E, C. Ma, and L. Wu, “A comparative analysis of optimization

and generalization properties of two-layer neural network and random

feature models under gradient descent dynamics,” Science China

Mathematics, vol. 63, no. 7, pp. 1235–1258, 2020. [Online]. Available:

https://doi.org/10.1007/s11425-019-1628-5

[52] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,

E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,

L. Fang, J. Bai, and S. Chintala, PyTorch: An Imperative Style, High-

Performance Deep Learning Library. Red Hook, NY, USA: Curran

Associates Inc., 2019.

[53] D. P. Bertsekas, Convex Optimization Algorithms. Athena Scientific,

2015.

224

https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://openreview.net/forum?id=S1eK3i09YQ
https://doi.org/10.1007/s11425-019-1628-5

[54] T. Schaul, X. Zhang, and Y. LeCun, “No more pesky learning rates,” in

Proc. of the 30th International Conference on Machine Learning, PMLR

28(3), vol. 28, Atlanta, Georgia, June 2013, pp. 343–351.

[55] H. Robbins and S. Monro, “A stochastic approximation method,” The

Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951.

[56] M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman, D. Pfau,

T. Schaul, B. Shillingford, and N. de Freitas, “Learning to learn by gradi-

ent descent by gradient descent,” in Proceedings of the 30th International

Conference on Neural Information Processing Systems, ser. NIPS’16.

Red Hook, NY, USA: Curran Associates Inc., 2016, pp. 3988–3996.

[57] Y. Nesterov, Introductory lectures on convex optimization, ser. Applied

Optimization. Kluwer Academic Publishers, Boston, MA, 2004,

vol. 87, a basic course. [Online]. Available: http://dx.doi.org/10.1007/

978-1-4419-8853-9

[58] H. Bauschke and P. Combettes, Convex Analysis and Monotone Operator

Theory in Hilbert Spaces, 2nd ed. New York: Springer, 2017.

[59] V. Istrăt,escu, Fixed point theory: An Introduction, ser. Mathematics and

its applications ; 7. Dordrecht: Reidel, 1981.

[60] B. Ying, K. Yuan, Y. Chen, H. Hu, P. PAN, and W. Yin,

“Exponential graph is provably efficient for decentralized deep training,”

in Advances in Neural Information Processing Systems, M. Ranzato,

A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds.,

vol. 34. Curran Associates, Inc., 2021, pp. 13 975–13 987. [Online].

225

http://dx.doi.org/10.1007/978-1-4419-8853-9
http://dx.doi.org/10.1007/978-1-4419-8853-9

Available: https://proceedings.neurips.cc/paper_files/paper/2021/file/

74e1ed8b55ea44fd7dbb685c412568a4-Paper.pdf

[61] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on a

graph,” SIAM Review, vol. 46, no. 4, pp. 667–689, 2004.

[62] D. Mills, “Internet time synchronization: the network time protocol,”

IEEE Transactions on Communications, vol. 39, no. 10, pp. 1482–1493,

1991.

[63] J. Hirvonen and J. Suomela. (2023) Distributed algorithms 2020.

[64] R. Diestel, Graph Theory. Springer Berlin Heidelberg, 2005.

[65] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and

V. Smith, “Federated optimization in heterogeneous networks,” in

Proceedings of the Third Conference on Machine Learning and Systems,

MLSys 2020, Austin, TX, USA, March 2-4, 2020, I. S. Dhillon,

D. S. Papailiopoulos, and V. Sze, Eds. mlsys.org, 2020. [Online].

Available: https://proceedings.mlsys.org/paper_files/paper/2020/hash/

1f5fe83998a09396ebe6477d9475ba0c-Abstract.html

[66] A. Tanenbaum and D. Wetherall, Computer Networks, 5th ed. USA:

Prentice Hall Press, 2010.

[67] P. Tseng, “Convergence of a block coordinate descent method for

nondifferentiable minimization,” Journal of Optimization Theory and

Applications, vol. 109, no. 3, pp. 475–494, 2001. [Online]. Available:

https://doi.org/10.1023/A:1017501703105

226

https://proceedings.neurips.cc/paper_files/paper/2021/file/74e1ed8b55ea44fd7dbb685c412568a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/74e1ed8b55ea44fd7dbb685c412568a4-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
https://doi.org/10.1023/A:1017501703105

[68] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Op-

timization and Statistical Learning via the Alternating Direction Method

of Multipliers. Hanover, MA: Now Publishers, 2010, vol. 3, no. 1.

[69] J. Liu and C. Zhang, “Distributed learning systems with first-order

methods,” Foundations and Trends in Databases, vol. 9, no. 1, p. 100.

[70] C. Wang, Y. Yang, and P. Zhou, “Towards efficient scheduling of federated

mobile devices under computational and statistical heterogeneity,” IEEE

Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp.

394–410, 2021.

[71] H. Feyzmahdavian and M. Johansson, “Asynchronous iterations in opti-

mization: new sequence results and sharper algorithmic guarantees,” J.

Mach. Learn. Res., vol. 24, no. 1, Jan. 2023.

[72] E. K. Ryu and S. Boyd, “A primer on monotone operator methods,”

Applied and Computational Mathematics, vol. 15, no. 1, pp. 3–43, 2016,

survey.

[73] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Federated

Learning, 1st ed. Springer, 2022.

[74] S. Iyer, T. Killingback, B. Sundaram, and Z. Wang, “Attack robustness

and centrality of complex networks.” PLoS One, vol. 8, no. 4, p. e59613,

2013.

[75] D. J. Spiegelhalter, “An omnibus test for normality for small samples,”

Biometrika, vol. 67, no. 2, pp. 493–496, 2024/03/25/ 1980. [Online].

Available: http://www.jstor.org/stable/2335498

227

http://www.jstor.org/stable/2335498

[76] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Horizontal

Federated Learning. Cham: Springer International Publishing, 2020, pp.

49–67. [Online]. Available: https://doi.org/10.1007/978-3-031-01585-4_4

[77] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learning.

Cambridge, Massachusetts: The MIT Press, 2006.

[78] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Vertical

Federated Learning. Cham: Springer International Publishing, 2020, pp.

69–81. [Online]. Available: https://doi.org/10.1007/978-3-031-01585-4_5

[79] H. Ludwig and N. Baracaldo, Eds., Federated Learning: A Comprehensive

Overview of Methods and Applications. Springer, 2022.

[80] A. Shamsian, A. Navon, E. Fetaya, and G. Chechik, “Personalized

federated learning using hypernetworks,” in Proceedings of the 38th

International Conference on Machine Learning, ser. Proceedings of

Machine Learning Research, M. Meila and T. Zhang, Eds., vol.

139. PMLR, 18–24 Jul 2021, pp. 9489–9502. [Online]. Available:

https://proceedings.mlr.press/v139/shamsian21a.html

[81] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,

“Learning to compare: Relation network for few-shot learning,” in 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2018, pp. 1199–1208.

[82] V. Satorras and J. Bruna, “Few-shot learning with graph neural

networks.” in ICLR (Poster). OpenReview.net, 2018. [Online]. Available:

http://dblp.uni-trier.de/db/conf/iclr/iclr2018.html#SatorrasE18

228

https://doi.org/10.1007/978-3-031-01585-4_4
https://doi.org/10.1007/978-3-031-01585-4_5
https://proceedings.mlr.press/v139/shamsian21a.html
http://dblp.uni-trier.de/db/conf/iclr/iclr2018.html#SatorrasE18

[83] A.-L. Barabási, N. Gulbahce, and J. Loscalzo, “Network medicine:

a network-based approach to human disease,” Nature Reviews

Genetics, vol. 12, no. 1, pp. 56–68, 2011. [Online]. Available:

https://doi.org/10.1038/nrg2918

[84] A. Jung and N. Tran, “Localized linear regression in networked data,”

IEEE Sig. Proc. Lett., vol. 26, no. 7, Jul. 2019.

[85] D. Hallac, J. Leskovec, and S. Boyd, “Network lasso: Clustering and

optimization in large graphs,” in Proc. SIGKDD, 2015, pp. 387–396.

[86] A. Jung, G. Hannak, and N. Görtz, “Graphical LASSO Based Model

Selection for Time Series,” IEEE Sig. Proc. Letters, vol. 22, no. 10, Oct.

2015.

[87] A. Jung, “Learning the conditional independence structure of station-

ary time series: A multitask learning approach,” IEEE Trans. Signal

Processing, vol. 63, no. 21, Nov. 2015.

[88] V. Kalofolias, “How to learn a graph from smooth signals,” in Proceed-

ings of the 19th International Conference on Artificial Intelligence and

Statistics, ser. Proceedings of Machine Learning Research, A. Gretton

and C. C. Robert, Eds., vol. 51. Cadiz, Spain: PMLR, 09–11 May 2016,

pp. 920–929.

[89] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs

from data: A signal representation perspective,” IEEE Signal Processing

Magazine, vol. 36, no. 3, pp. 44–63, 2019.

229

https://doi.org/10.1038/nrg2918

[90] J. Tropp, “An introduction to matrix concentration inequalities,” Found.

Trends Mach. Learn., May 2015.

[91] A. Jung, “Clustering in partially labeled stochastic block models via total

variation minimization,” in Proc. 54th Asilomar Conf. Signals, Systems,

Computers, Pacific Grove, CA, Nov. 2020.

[92] B. Bollobas, W. Fulton, A. Katok, F. Kirwan, and P. Sarnak, Random

graphs. Cambridge studies in advanced mathematics., 2001, vol. 73.

[93] G. Keiser, Optical Fiber Communication, 4th ed. New Delhi: Mc-Graw

Hill, 2011.

[94] D. Tse and P. Viswanath, Fundamentals of wireless communication.

USA: Cambridge University Press, 2005.

[95] D. Spielman, “Spectral graph theory,” in Combinatorial Scientific Com-

puting, U. Naumann and O. Schenk, Eds. Chapman and Hall/CRC,

2012.

[96] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathemati-

cal Journal,, vol. 23, no. 2, pp. 298–305, 1973.

[97] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their

applications,” Bull. Amer. Math. Soc., vol. 43, no. 04, pp. 439–562, Aug.

2006.

[98] Y.-T. Chow, W. Shi, T. Wu, and W. Yin, “Expander graph and

communication-efficient decentralized optimization,” in 2016 50th Asilo-

mar Conference on Signals, Systems and Computers, 2016, pp. 1715–1720.

230

[99] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation

Theory. Englewood Cliffs, NJ: Prentice Hall, 1993.

[100] S. Chepuri, S. Liu, G. Leus, and A. Hero, “Learning sparse graphs under

smoothness prior,” in Proc. of the IEEE Int. Conf. on Acoustics, Speech

and Signal Processing, 2017, pp. 6508–6512.

[101] J. Tan, Y. Zhou, G. Liu, J. H. Wang, and S. Yu, “pFedSim: Similarity-

Aware Model Aggregation Towards Personalized Federated Learning,”

arXiv e-prints, p. arXiv:2305.15706, May 2023.

[102] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016.

[103] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Van-

dergheynst, “Graph signal processing: Overview, challenges, and applica-

tions,” Proceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[104] H.-L. E. G. on Artificial Intelligence, “Ethics guidelines for trustworthy

AI,” European Commission, Tech. Rep., April 2019.

[105] Department of Industry, Science, Energy and Resources, “Aus-

tralia’s AI Ethics Principles,” Government of Australia, 2024,

accessed: 2024-09-30. [Online]. Available: https://www.industry.

gov.au/publications/australias-artificial-intelligence-ethics-framework/

australias-ai-ethics-principles

[106] OECD, “Oecd ai principles: Recommendation of the council on artificial

intelligence,” https://oecd.ai/en/ai-principles, 2019, accessed: 2024-09-

30.

231

https://www.industry.gov.au/publications/australias-artificial-intelligence-ethics-framework/australias-ai-ethics-principles
https://www.industry.gov.au/publications/australias-artificial-intelligence-ethics-framework/australias-ai-ethics-principles
https://www.industry.gov.au/publications/australias-artificial-intelligence-ethics-framework/australias-ai-ethics-principles
https://oecd.ai/en/ai-principles

[107] Cyberspace Administration of China, “Interim measures for the man-

agement of generative artificial intelligence services,” https://www.

chinalawtranslate.com/en/generative-ai/, 2023, accessed: 2025-05-02.

[108] China Academy of Information and Communications Tech-

nology (CAICT), “Artificial intelligence security gover-

nance framework,” https://www.haynesboone.com/-/media/

project/haynesboone/haynesboone/pdfs/alert-pdfs/2024/

china-alert---china-publishes-the-ai-security-governance-framework.

pdf, 2024, accessed: 2025-05-02.

[109] Ministry of Science and Technology of China, “New generation artifi-

cial intelligence ethics code,” https://www.chinalawvision.com/2025/01/

digital-economy-ai/ai-ethics-overview-china/, 2021, accessed: 2025-05-

02.

[110] National Institute of Standards and Technology, “Artificial intelligence

risk management framework (ai rmf 1.0),” https://nvlpubs.nist.gov/

nistpubs/ai/nist.ai.100-1.pdf, 2023, accessed: 2025-05-02.

[111] White House Office of Science and Technology Policy, “Blueprint

for an ai bill of rights,” https://bidenwhitehouse.archives.gov/ostp/

ai-bill-of-rights/, 2022, accessed: 2025-05-02.

[112] The White House, “Executive order 14110: Safe, secure,

and trustworthy development and use of artificial intelligence,”

https://www.federalregister.gov/documents/2023/11/01/2023-24283/

232

https://www.chinalawtranslate.com/en/generative-ai/
https://www.chinalawtranslate.com/en/generative-ai/
https://www.haynesboone.com/-/media/project/haynesboone/haynesboone/pdfs/alert-pdfs/2024/china-alert---china-publishes-the-ai-security-governance-framework.pdf
https://www.haynesboone.com/-/media/project/haynesboone/haynesboone/pdfs/alert-pdfs/2024/china-alert---china-publishes-the-ai-security-governance-framework.pdf
https://www.haynesboone.com/-/media/project/haynesboone/haynesboone/pdfs/alert-pdfs/2024/china-alert---china-publishes-the-ai-security-governance-framework.pdf
https://www.haynesboone.com/-/media/project/haynesboone/haynesboone/pdfs/alert-pdfs/2024/china-alert---china-publishes-the-ai-security-governance-framework.pdf
https://www.chinalawvision.com/2025/01/digital-economy-ai/ai-ethics-overview-china/
https://www.chinalawvision.com/2025/01/digital-economy-ai/ai-ethics-overview-china/
https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf
https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf
https://bidenwhitehouse.archives.gov/ostp/ai-bill-of-rights/
https://bidenwhitehouse.archives.gov/ostp/ai-bill-of-rights/
https://www.federalregister.gov/documents/2023/11/01/2023-24283/safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence
https://www.federalregister.gov/documents/2023/11/01/2023-24283/safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence

safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence,

2023, accessed: 2025-05-02.

[113] D. Kuss and O. Lopez-Fernandez, “Internet addiction and problematic

internet use: A systematic review of clinical research.” World J Psychiatry,

vol. 6, no. 1, pp. 143–176, Mar 2016.

[114] L. Munn, “Angry by design: toxic communication and technical

architectures,” Humanities and Social Sciences Communications, vol. 7,

no. 1, p. 53, 2020. [Online]. Available: https://doi.org/10.1057/

s41599-020-00550-7

[115] P. Mozur, “A genocide incited on facebook, with posts from myanmar’s

military,” The New York Times, 2018.

[116] A. Simchon, M. Edwards, and S. Lewandowsky, “The persuasive effects

of political microtargeting in the age of generative artificial intelligence.”

PNAS Nexus, vol. 3, no. 2, p. pgae035, Feb 2024.

[117] J. R. Taylor, An Introduction to Error Analysis: The study of uncer-

tainties in physical measurements, second edition. ed. Sausalito, Calif:

University Science Books, 1997.

[118] A. Jung, “A fixed-point of view on gradient methods for big data,”

Frontiers in Applied Mathematics and Statistics, vol. 3, 2017. [Online].

Available: https://www.frontiersin.org/article/10.3389/fams.2017.00018

[119] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for

federated learning,” IEEE Transactions on Signal Processing, vol. 70, pp.

1142–1154, 2022.

233

https://www.federalregister.gov/documents/2023/11/01/2023-24283/safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence
https://www.federalregister.gov/documents/2023/11/01/2023-24283/safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence
https://www.federalregister.gov/documents/2023/11/01/2023-24283/safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence
https://doi.org/10.1057/s41599-020-00550-7
https://doi.org/10.1057/s41599-020-00550-7
https://www.frontiersin.org/article/10.3389/fams.2017.00018

[120] H. P. Lopuhaä and P. J. Rousseeuw, “Breakdown points of affine

equivariant estimators of multivariate location and covariance matrices,”

The Annals of Statistics, vol. 19, no. 1, pp. 229–248, 1991. [Online].

Available: http://www.jstor.org/stable/2241852

[121] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey

on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp.

102–114, 2002.

[122] M. Parter, “Small Cuts and Connectivity Certificates: A Fault Tolerant

Approach,” in 33rd International Symposium on Distributed Computing

(DISC 2019), ser. Leibniz International Proceedings in Informatics

(LIPIcs), J. Suomela, Ed., vol. 146. Dagstuhl, Germany: Schloss

Dagstuhl – Leibniz-Zentrum für Informatik, 2019, pp. 30:1–30:16.

[Online]. Available: https://drops.dagstuhl.de/entities/document/10.

4230/LIPIcs.DISC.2019.30

[123] S. Chechik, M. Langberg, D. Peleg, and L. Roditty, “Fault-tolerant

spanners for general graphs,” in Proceedings of the Forty-First Annual

ACM Symposium on Theory of Computing, ser. STOC ’09. New York,

NY, USA: Association for Computing Machinery, 2009, p. 435–444.

[Online]. Available: https://doi.org/10.1145/1536414.1536475

[124] J. Near and D. Darais, “Guidelines for evaluating differential privacy

guarantees,” National Institute of Standards and Technology, Gaithers-

burg, MD, Tech. Rep., 2023.

[125] S. Wachter, “Data protection in the age of big data,” Nature

234

http://www.jstor.org/stable/2241852
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2019.30
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2019.30
https://doi.org/10.1145/1536414.1536475

Electronics, vol. 2, no. 1, pp. 6–7, 2019. [Online]. Available:

https://doi.org/10.1038/s41928-018-0193-y

[126] P. Samarati, “Protecting respondents identities in microdata release,”

IEEE Transactions on Knowledge and Data Engineering, vol. 13, no. 6,

pp. 1010–1027, 2001.

[127] E. Comission, “Regulation (eu) 2016/679 of the european parliament

and of the council of 27 april 2016 on the protection of natural persons

with regard to the processing of personal data and on the free movement

of such data, and repealing directive 95/46/ec (general data protection

regulation) (text with eea relevance),” no. 119, pp. 1–88, May 2016.

[128] U. N. G. Assembly, The Universal Declaration of Human Rights

(UDHR), New York, 1948.

[129] J. Colin, T. Fel, R. Cadène, and T. Serre, “What I Cannot Predict,

I Do Not Understand: A Human-Centered Evaluation Framework for

Explainability Methods.” Advances in Neural Information Processing

Systems, vol. 35, pp. 2832–2845, 2022.

[130] A. Jung and P. Nardelli, “An information-theoretic approach to person-

alized explainable machine learning,” IEEE Sig. Proc. Lett., vol. 27, pp.

825–829, 2020.

[131] L. Zhang, G. Karakasidis, A. Odnoblyudova, L. Dogruel, Y. Tian, and

A. Jung, “Explainable empirical risk minimization,” Neural Computing

and Applications, vol. 36, no. 8, pp. 3983–3996, 2024. [Online]. Available:

https://doi.org/10.1007/s00521-023-09269-3

235

https://doi.org/10.1038/s41928-018-0193-y
https://doi.org/10.1007/s00521-023-09269-3

[132] N. Kozodoi, J. Jacob, and S. Lessmann, “Fairness in credit scoring:

Assessment, implementation and profit implications,” European Journal

of Operational Research, vol. 297, no. 3, pp. 1083–1094, 2022.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0377221721005385

[133] J. Gonçalves-Sá and F. Pinheiro, Societal Implications of Rec-

ommendation Systems: A Technical Perspective. Cham: Springer

International Publishing, 2024, pp. 47–63. [Online]. Available:

https://doi.org/10.1007/978-3-031-41264-6_3

[134] A. Abrol and R. Jha, “Power optimization in 5g networks: A step

towards green communication,” IEEE Access, vol. 4, pp. 1355–1374,

2016.

[135] M. J. Sheller, B. Edwards, G. A. Reina, J. Martin, S. Pati, A. Kotrotsou,

M. Milchenko, W. Xu, D. Marcus, R. R. Colen, and S. Bakas, “Federated

learning in medicine: facilitating multi-institutional collaborations

without sharing patient data,” Scientific Reports, vol. 10, no. 1, p. 12598,

2020. [Online]. Available: https://doi.org/10.1038/s41598-020-69250-1

[136] P. Amin, N. R. Anikireddypally, S. Khurana, S. Vadakkemadathil,

and W. Wu, “Personalized health monitoring using predictive analytics,”

in 2019 IEEE Fifth International Conference on Big Data Computing

Service and Applications (BigDataService), 2019, pp. 271–278.

[137] R. B. Ash, Probability and Measure Theory, 2nd ed. New York:

Academic Press, 2000.

236

https://www.sciencedirect.com/science/article/pii/S0377221721005385
https://www.sciencedirect.com/science/article/pii/S0377221721005385
https://doi.org/10.1007/978-3-031-41264-6_3
https://doi.org/10.1038/s41598-020-69250-1

[138] P. R. Halmos, Measure Theory. New York: Springer, 1974.

[139] C. Dwork and A. Roth, “The algorithmic foundations of differential

privacy,” Foundations and Trends® in Theoretical Computer

Science, vol. 9, no. 3–4, pp. 211–407, 2014. [Online]. Available:

http://dx.doi.org/10.1561/0400000042

[140] U. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Randomized

aggregatable privacy-preserving ordinal response,” in Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications

Security, ser. CCS ’14. New York, NY, USA: Association for

Computing Machinery, 2014, p. 1054–1067. [Online]. Available:

https://doi.org/10.1145/2660267.2660348

[141] Apple Machine Learning Research, “Understanding aggregate trends

for apple intelligence using differential privacy,” https://machinelearning.

apple.com/research/differential-privacy-aggregate-trends, April 2025, ac-

cessed: 2025-05-20.

[142] J. M. Abowd, “The u.s. census bureau adopts differential privacy,” in

Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, ser. KDD ’18. New York, NY,

USA: Association for Computing Machinery, 2018, p. 2867. [Online].

Available: https://doi.org/10.1145/3219819.3226070

[143] J. P. Near, D. Darais, N. Lefkovitz, and G. S. Howarth,

“Guidelines for evaluating differential privacy guarantees,” National

Institute of Standards and Technology, Gaithersburg, MD, NIST

237

http://dx.doi.org/10.1561/0400000042
https://doi.org/10.1145/2660267.2660348
https://machinelearning.apple.com/research/differential-privacy-aggregate-trends
https://machinelearning.apple.com/research/differential-privacy-aggregate-trends
https://doi.org/10.1145/3219819.3226070

Special Publication NIST SP 800-226, 2025. [Online]. Available:

https://doi.org/10.6028/NIST.SP.800-226

[144] S. Asoodeh, J. Liao, F. P. Calmon, O. Kosut, and L. Sankar, “A Better

Bound Gives a Hundred Rounds: Enhanced Privacy Guarantees via

f -Divergences,” arXiv e-prints, p. arXiv:2001.05990, Jan. 2020.

[145] I. Mironov, “Rényi differential privacy,” in 2017 IEEE 30th Computer

Security Foundations Symposium (CSF), 2017, pp. 263–275.

[146] S. M. Kay, Fundamentals of statistical signal processing. Vol. 2., Detec-

tion theory, ser. Prentice-Hall signal processing series. Upper Saddle

River, NJ: Prentice-Hall PTR, 1998.

[147] P. Kairouz, S. Oh, and P. Viswanath, “The composition theorem

for differential privacy,” in Proceedings of the 32nd International

Conference on Machine Learning, ser. Proceedings of Machine

Learning Research, F. Bach and D. Blei, Eds., vol. 37. Lille,

France: PMLR, 07–09 Jul 2015, pp. 1376–1385. [Online]. Available:

https://proceedings.mlr.press/v37/kairouz15.html

[148] Q. Geng and P. Viswanath, “The optimal noise-adding mechanism in

differential privacy,” IEEE Transactions on Information Theory, vol. 62,

no. 2, pp. 925–951, 2016.

[149] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,

and L. Zhang, “Deep learning with differential privacy,” ser. CCS ’16.

New York, NY, USA: Association for Computing Machinery, 2016, p.

308–318. [Online]. Available: https://doi.org/10.1145/2976749.2978318

238

https://doi.org/10.6028/NIST.SP.800-226
https://proceedings.mlr.press/v37/kairouz15.html
https://doi.org/10.1145/2976749.2978318

[150] L. Chua, B. Ghazi, P. Kamath, R. Kumar, P. Manurangsi, A. Sinha,

and C. Zhang, “How private are DP-SGD implementations?” in

Proceedings of the 41st International Conference on Machine Learning,

ser. Proceedings of Machine Learning Research, R. Salakhutdinov,

Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, and F. Berkenkamp,

Eds., vol. 235. PMLR, 21–27 Jul 2024, pp. 8904–8918. [Online].

Available: https://proceedings.mlr.press/v235/chua24a.html

[151] H. Shu and H. Zhu, “Sensitivity analysis of deep neural networks,”

in Proceedings of the Thirty-Third AAAI Conference on Artificial

Intelligence, ser. AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019.

[Online]. Available: https://doi.org/10.1609/aaai.v33i01.33014943

[152] R. Busa-Fekete, A. Munoz-Medina, U. Syed, and S. Vassilvitskii,

“Label differential privacy and private training data release,” in

Proceedings of the 40th International Conference on Machine

Learning, ser. Proceedings of Machine Learning Research, vol.

202. PMLR, 23–29 Jul 2023, pp. 3233–3251. [Online]. Available:

https://proceedings.mlr.press/v202/busa-fekete23a.html

[153] B. Balle, G. Barthe, and M. Gaboardi, “Privacy amplification by sub-

sampling: tight analyses via couplings and divergences,” in Proceedings

of the 32nd International Conference on Neural Information Processing

Systems, ser. NIPS’18. Red Hook, NY, USA: Curran Associates Inc.,

2018, pp. 6280–6290.

[154] P. Cuff and L. Yu, “Differential privacy as a mutual information

constraint,” in Proceedings of the 2016 ACM SIGSAC Conference on

239

https://proceedings.mlr.press/v235/chua24a.html
https://doi.org/10.1609/aaai.v33i01.33014943
https://proceedings.mlr.press/v202/busa-fekete23a.html

Computer and Communications Security, ser. CCS ’16. New York, NY,

USA: Association for Computing Machinery, 2016, pp. 43–54. [Online].

Available: https://doi.org/10.1145/2976749.2978308

[155] A. Makhdoumi, S. Salamatian, N. Fawaz, and M. Médard, “From the

information bottleneck to the privacy funnel,” in 2014 IEEE Information

Theory Workshop (ITW 2014), 2014, pp. 501–505.

[156] M. Mohamed, B. Shrestha, and N. Saxena, “Smashed: Sniffing and

manipulating android sensor data for offensive purposes,” IEEE Transac-

tions on Information Forensics and Security, vol. 12, no. 4, pp. 901–913,

2017.

[157] A. Turner, D. Tsipras, and A. Madry, “Clean-label backdoor

attacks,” 2019. [Online]. Available: https://openreview.net/forum?id=

HJg6e2CcK7

[158] A. Vassilev, A. Oprea, A. Fordyce, and H. Anderson, “Adversarial

machine learning: A taxonomy and terminology of attacks and

mitigations,” National Institute of Standards and Technology,

Gaithersburg, MD, NIST Artificial Intelligence (AI) Report NIST AI

100-2e2023, 2024. [Online]. Available: https://doi.org/10.6028/NIST.AI.

100-2e2023

[159] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer,

“Machine learning with adversaries: Byzantine tolerant gradient descent,”

in Advances in Neural Information Processing Systems, I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

240

https://doi.org/10.1145/2976749.2978308
https://openreview.net/forum?id=HJg6e2CcK7
https://openreview.net/forum?id=HJg6e2CcK7
https://doi.org/10.6028/NIST.AI.100-2e2023
https://doi.org/10.6028/NIST.AI.100-2e2023

R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017. [Online].

Available: https://proceedings.neurips.cc/paper_files/paper/2017/file/

f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf

[160] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How

to backdoor federated learning,” in Proceedings of the Twenty Third

International Conference on Artificial Intelligence and Statistics, ser.

Proceedings of Machine Learning Research, S. Chiappa and R. Calandra,

Eds., vol. 108. PMLR, 26–28 Aug 2020, pp. 2938–2948. [Online].

Available: https://proceedings.mlr.press/v108/bagdasaryan20a.html

[161] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks

that exploit confidence information and basic countermeasures,” in

Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security, ser. CCS ’15. New York, NY, USA:

Association for Computing Machinery, 2015, p. 1322–1333. [Online].

Available: https://doi.org/10.1145/2810103.2813677

[162] G. Lugosi and S. Mendelson, “Robust multivariate mean estimation:

The optimality of trimmed mean,” Annals of Statistics, vol. 49, no. 1, pp.

393–410, Feb. 2021, publisher Copyright: © Institute of Mathematical

Statistics, 2021.

[163] X. Cao, M. Fang, J. Liu, and N. Gong, “Fltrust: Byzantine-robust

federated learning via trust bootstrapping,” in Network and Distributed

Systems Security (NDSS) Symposium 2021, 01 2021.

[164] S. M. Stigler, “The Asymptotic Distribution of the Trimmed Mean,”

241

https://proceedings.neurips.cc/paper_files/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.mlr.press/v108/bagdasaryan20a.html
https://doi.org/10.1145/2810103.2813677

The Annals of Statistics, vol. 1, no. 3, pp. 472 – 477, 1973. [Online].

Available: https://doi.org/10.1214/aos/1176342412

[165] S. Shen, S. Tople, and P. Saxena, “Auror: defending against poisoning

attacks in collaborative deep learning systems,” in Proceedings of the

32nd Annual Conference on Computer Security Applications, ser. ACSAC

’16. New York, NY, USA: Association for Computing Machinery, 2016, p.

508–519. [Online]. Available: https://doi.org/10.1145/2991079.2991125

[166] N. Wang, Y. Xiao, Y. Chen, Y. Hu, W. Lou, and Y. T. Hou,

“Flare: Defending federated learning against model poisoning attacks via

latent space representations,” in Proceedings of the 2022 ACM on Asia

Conference on Computer and Communications Security, ser. ASIA CCS

’22. New York, NY, USA: Association for Computing Machinery, 2022, p.

946–958. [Online]. Available: https://doi.org/10.1145/3488932.3517395

[167] M. Fang, Z. Zhang, Hairi, P. Khanduri, J. Liu, S. Lu, Y. Liu,

and N. Gong, “Byzantine-robust decentralized federated learning,” in

Proceedings of the 2024 on ACM SIGSAC Conference on Computer

and Communications Security, ser. CCS ’24. New York, NY, USA:

Association for Computing Machinery, 2024, p. 2874–2888. [Online].

Available: https://doi.org/10.1145/3658644.3670307

[168] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust

distributed learning: Towards optimal statistical rates,” in Proceedings of

the 35th International Conference on Machine Learning, ser. Proceedings

of Machine Learning Research, vol. 80. PMLR, 10–15 Jul 2018, pp. 5650–

5659. [Online]. Available: https://proceedings.mlr.press/v80/yin18a.html

242

https://doi.org/10.1214/aos/1176342412
https://doi.org/10.1145/2991079.2991125
https://doi.org/10.1145/3488932.3517395
https://doi.org/10.1145/3658644.3670307
https://proceedings.mlr.press/v80/yin18a.html

[169] K. Chaudhuri, C. Monteleoni, and A. Sarwate, “Differentially private

empirical risk minimization,” J. Mach. Learn. Res., vol. 12, pp. 1069–1109,

Mar. 2011.

[170] C. Dwork, G. N. Rothblum, and S. Vadhan, “Boosting and differential

privacy,” in 2010 IEEE 51st Annual Symposium on Foundations of

Computer Science, 2010, pp. 51–60.

243

	Introduction to Federated Learning
	Core Techniques in Federated Learning
	Book Structure and Roadmap
	Exercises

	Machine Learning Foundations for FL
	Components of ML Systems: A Design Framework
	Computational Aspects of erm
	Statistical Aspects of ERM
	Validation and Diagnosis of ML
	Regularization
	From ML to FL via Regularization
	Exercises

	A Design Principle for FL
	FL Networks
	Generalized Total Variation
	Generalized Total Variation Minimization
	Computational Aspects of gtvmin
	Statistical Aspects of gtvmin

	Non-Parametric Models in FL Networks
	Interpretations
	Exercises
	Proofs
	Proof of Proposition 3.1

	Gradient Methods for Federated Optimization
	Gradient Descent
	How to Choose the Learning Rate
	When to Stop?
	Perturbed Gradient Step
	Handling Constraints - Projected Gradient Descent
	Extended Gradient Methods for Federated Optimization
	Gradient Methods as Fixed-Point Iterations
	Exercises

	FL Algorithms
	Gradient Descent for GTVMin
	Message Passing Implementation
	FedSGD
	FedAvg
	FedProx
	FedRelax
	A Unified Formulation
	Asynchronous FL Algorithms
	Exercises
	Proofs
	Proof of Proposition 5.1
	Proof of Proposition 5.2

	Key Variants of Federated Learning
	Single-Model FL
	Clustered FL
	Horizontal FL
	Vertical FL
	Personalized Federated Learning
	Few-Shot Learning
	Exercises
	Proofs
	Proof of Proposition 6.1

	Graph Learning for FL Networks
	Edges as Design Choice
	Measuring (Dis-)Similarity Between Datasets
	Graph Learning Methods
	Exercises

	Trustworthy FL
	Human Agency and Oversight
	Technical Robustness and Safety
	Sensitivity Analysis
	Estimation Error Analysis
	Robustness of fl algorithms
	Network Resilience

	Privacy and Data Governance
	Transparency
	Diversity, Non-Discrimination and Fairness
	Societal and Environmental Well-Being
	Exercises

	Privacy Protection in FL
	Measuring Privacy Leakage
	Ensuring Differential Privacy
	Private Feature Learning
	Exercises

	Cybersecurity in FL: Attacks and Defenses
	A Simple Attack Model
	Model Poisoning
	Data Poisoning

	attack Types
	Making fl Robust Against attack
	Exercises

