CS-E4740 - Federated Learning FL Algorithms

Assoc. Prof. Alexander Jung

Spring 2025

Playlist

Glossary

Course Site

Recap and Learning Goals

Applying Gradient Methods to GTVMin

Federated Learning Algorithms

Asynchronous FL Algorithms

Table of Contents

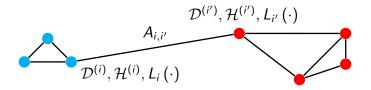
Recap and Learning Goals

Applying Gradient Methods to GTVMin

Federated Learning Algorithms

Asynchronous FL Algorithms

FL Network as a Mathematical Model for FL



- An FL network consists of devices i = 1, ..., n.
- Some i, i' are connected by an edge with weight $A_{i,i'} > 0$.
- Device *i* generates data $\mathcal{D}^{(i)}$ and trains model $\mathcal{H}^{(i)}$.
- ▶ Data $\mathcal{D}^{(i)}$ is used to construct a loss func. $L_i(\cdot)$.¹

¹Can you think of other constructions of a loss function?

GTV Minimization (for Parametric Models)

We train local models in a collaborative fashion by solving

$$\min_{\mathbf{w}^{(1)},\ldots,\mathbf{w}^{(n)}}\sum_{i=1}^{n}L_{i}\left(\mathbf{w}^{(i)}\right)+\alpha\sum_{\{i,i'\}\in\mathcal{E}}A_{i,i'}\left\|\mathbf{w}^{(i)}-\mathbf{w}^{(i')}\right\|_{2}^{2}\quad (\mathsf{GTVMin}).$$

Solution consists of learnt model params. $\widehat{\mathbf{w}}^{(i)}$.

- The parameter $\alpha \geq 0$ controls the clustering of $\widehat{\mathbf{w}}^{(i)}$.
- For $\alpha = 0$, GTVMin reduces to separate ERM for each *i*.
- Large α results in $\widehat{\mathbf{w}}^{(i)}$ being nearly constant.²

²Nearly constant over each connected component of \mathcal{G} .

After completing this module, you know how

- FL alg. can be obtained from gradient descent,
- to implement GD as message passing,
- to generalize GD to handle non-parametric models,
- **b** to implement **asynchronous FL algorithms.**

Table of Contents

Recap and Learning Goals

Applying Gradient Methods to GTVMin

Federated Learning Algorithms

Asynchronous FL Algorithms

Gradient Step for GTVMin

Starting from initial local params. $\mathbf{w}^{(i,0)}$, repeat grad. steps

$$\mathbf{w}^{(i,k+1)} = \mathbf{w}^{(i,k)} - \eta_{k,i} \left[\nabla L_i \left(\mathbf{w}^{(i,k)} \right) + 2\alpha \sum_{i' \in \mathcal{N}^{(i)}} A_{i,i'} \left(\mathbf{w}^{(i,k)} - \mathbf{w}^{(i',k)} \right) \right]$$

- The learning rate $\eta_{k,i}$ determines extent of update.
- ▶ $\nabla L_i(\mathbf{w}^{(i,k)})$ steers the update towards min. local loss.
- $(\mathbf{w}^{(i,k)} \mathbf{w}^{(i',k)})$ steers to agree with neighbours.

• $\alpha A_{i,i'}$ balances those two steering effects.

Synchronous Operation

The gradient step

$$\mathbf{w}^{(i,k+1)} = \mathbf{w}^{(i,k)} - \eta_{k,i} \left[\nabla L_i \left(\mathbf{w}^{(i,k)} \right) + 2\alpha \sum_{i' \in \mathcal{N}^{(i)}} A_{i,i'} \left(\mathbf{w}^{(i,k)} - \mathbf{w}^{(i',k)} \right) \right]$$

has to be carried out by all nodes $i = 1, \ldots, n$.

When these (local) gradient steps are completed, each node shares its new model params. with its neighbours.

After sharing the model params., start new iteration k := k+1.

Message Passing Implementation

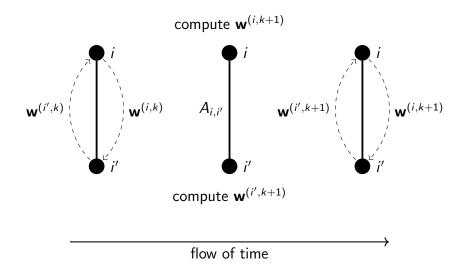


Table of Contents

Recap and Learning Goals

Applying Gradient Methods to GTVMin

Federated Learning Algorithms

Asynchronous FL Algorithms

Federated Gradient Descent (FedGD)

Each node $i = 1, \ldots, n$ initializes

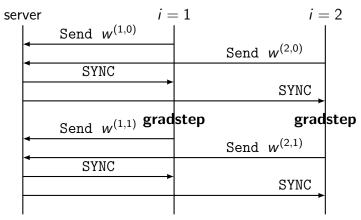
- ▶ local model params. $\mathbf{w}^{(i,0)} := \mathbf{0}$, and
- iteration counter k := 0.

Repeat the following steps at each node *i*:

- Send $\mathbf{w}^{(i,k)}$ to all neighbours $\mathcal{N}^{(i)}$.
- Do a gradient step.
- Increment iteration counter k := k + 1.

CAUTION: Nodes must execute steps synchronously!

Implementing FedGD with a Sync-Server



Federated Stochastic Gradient Descent (FedSGD)

Consider FL network with node *i* carrying the local dataset

$$\mathcal{D}^{(i)} = \left\{ \left(\mathbf{x}^{(i,1)}, y^{(i,1)} \right), \dots, \left(\mathbf{x}^{(i,m_i)}, y^{(i,m_i)} \right) \right\}.$$

Node i uses local loss function

$$L_i\left(\mathbf{w}^{(i)}\right) := (1/m_i) \sum_{r=1}^{m_i} \left(y^{(i,r)} - \left(\mathbf{w}^{(i)}\right)^T \mathbf{x}^{(i,r)} \right)^2.$$

FedGD requires to compute gradient,

$$\nabla L_{i}(\mathbf{w}^{(i)}) = (-2/m_{i}) \sum_{r=1}^{m_{i}} \mathbf{x}^{(i,r)} \left(y^{(i,r)} - (\mathbf{w}^{(i)})^{T} \mathbf{x}^{(i,r)} \right).$$

Stochastic Gradient Approximation

For some applications, the computation of

$$\sum_{r=1}^{m_i} \mathbf{x}^{(i,r)} \left(y^{(i,r)} - \left(\mathbf{w}^{(i)} \right)^T \mathbf{x}^{(i,r)} \right)$$

is intractable, e.g., too many data points or too slow access.

 \Rightarrow Use instead a sum over random subset $\mathcal{B} \subseteq \{1, \ldots, m_i\}$,

$$\sum_{r \in \mathcal{B}} \mathbf{x}^{(i,r)} \left(y^{(i,r)} - \left(\mathbf{w}^{(i)} \right)^T \mathbf{x}^{(i,r)} \right).$$

We refer to \mathcal{B} as batch with batch size $|\mathcal{B}|$.

Federated Averaging (FedAvg)

Some FL applications use common model at all nodes,

$$\mathbf{w}^{(i)} = \mathbf{w}^{(i')} \quad \forall i, i' \in \mathcal{V}.$$

GTVMin becomes constrained optimization problem:

$$\min_{\mathbf{w}^{(1)},\ldots,\mathbf{w}^{(n)}}\sum_{i\in\mathcal{V}}L_i\left(\mathbf{w}^{(i)}\right)\text{ s.t. } \mathbf{w}^{(i)}=\mathbf{w}^{(i')} \quad \forall i,i'\in\mathcal{V}.$$

- For diffable $L_i(\mathbf{w}^{(i)})$ we can apply projected GD.
- Projection step amounts to averaging $(1/n) \sum_{i=1}^{n} \mathbf{w}^{(i)}$.

(Almost) FedAvg

Init. counter (clock) k := 0 and model params $\widehat{\mathbf{w}} := \mathbf{0}$.

- 1. **Broadcast.** Server sends $\widehat{\mathbf{w}}$ to all nodes $i \in \mathcal{V}$.
- 2. Local Gradient Step. Each node computes

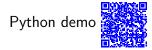
$$\mathbf{w}^{(i,k)} = \widehat{\mathbf{w}} - \eta_{k,i} \nabla L_i\left(\widehat{\mathbf{w}}\right).$$

- 3. **Collect.** Nodes send $\mathbf{w}^{(i,k)}$ back to server.
- 4. Aggregate. Server computes $\widehat{\mathbf{w}} := (1/n) \sum_{i=1}^{n} \mathbf{w}^{(i,k)}$.
- 5. Clock Tick. Server increments k := k + 1. Go to step 1.

FedAvg

We obtain FedAvg via the following modifications:³

- Use (stochastic) approximations of gradients.
- ► Instead of single GD step, compute several GD steps.
- Each iteration involves only a subset of nodes.



³B. McMahan et.al., Communication-Efficient Learning of Deep Networks from Decentralized Data, PMLR, 2017

FedProx

FedProx replaces GD steps in FedAvg with⁴

$$\mathbf{w}^{(i)} := \operatorname*{argmin}_{\mathbf{v} \in \mathbb{R}^d} \left[L_i(\mathbf{v}) + (1/\eta) \|\mathbf{v} - \widehat{\mathbf{w}}\|_2^2 \right]$$

with current global model params $\widehat{\mathbf{w}}$.

Empirical studies found FedProx to result in more robust FL systems compared to FedAvg.

FedProx seems to require less tuning for FL networks with devices having varying computational power.

⁴T. Li, et.al, Federated Optimization in Heterogeneous Networks, Proc. of Machine Learning and Systems 2, 2020.

Federated Relaxation (FedRelax)

Consider GTVMin objective function $f(\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(n)}) = \sum_{i=1}^{n} L_i(\mathbf{w}^{(i)}) + \alpha \sum_{\{i,i'\} \in \mathcal{E}} A_{i,i'} \|\mathbf{w}^{(i)} - \mathbf{w}^{(i')}\|_2^2.$

• Complicated due to coupling terms $A_{i,i'} \| \mathbf{w}^{(i)} - \mathbf{w}^{(i')} \|_2^2$.

Without coupling, GTVMin would be much easier.

• Optimize
$$f(\cdot)$$
 w.r.t. $\mathbf{w}^{(i)}$, holding $\{\mathbf{w}^{(i')}\}_{i' \in \mathcal{V} \setminus \{i\}}$ fixed!⁵

⁵Similar idea is used in the Jacobi method for solving linear equations.

FedRelax for Parametric Models

▶ Init. Set counter k := 0, local model params. $\widehat{\mathbf{w}}_0^{(i)} := \mathbf{0}$.

Repeat until stopping criterion:

• Each node *i* shares $\widehat{\mathbf{w}}_{k}^{(i)}$ with neighbours $\mathcal{N}^{(i)}$.

Local Update. Each node *i* computes⁶

$$\mathbf{w}^{(i,k+1)} := \underset{\mathbf{w}^{(i)} \in \mathbb{R}^d}{\operatorname{argmin}} L_i\left(\mathbf{w}^{(i)}\right) + \alpha \underset{i' \in \mathcal{N}^{(i)}}{\sum} A_{i,i'} \left\|\mathbf{w}^{(i)} - \mathbf{w}^{(i',k)}\right\|_2^2.$$

Clock Tick. k := k + 1.

....

⁶Note the similarity of local update with ridge regression.

FedRelax for Non-Parametric Models

▶ Init. k := 0, construct test-set $\mathcal{D}^{\{i,i'\}}$ for each $\{i,i'\} \in \mathcal{E}$

Repeat until stopping criterion:

▶ Each *i* shares $h^{(i,k)}(\mathbf{x})$ for each $\mathbf{x} \in \mathcal{D}^{\{i,i'\}}$ and $i' \in \mathcal{N}^{(i)}$.

► Local Update. Each node *i* computes $h^{(i,k+1)} \in \underset{h^{(i)} \in \mathcal{H}^{(i)}}{\operatorname{argmin}} L_i(h^{(i)}) + \alpha \sum_{i' \in \mathcal{N}^{(i)}} A_{i,i'} D(h^{(i)}, h^{(i',k)}).$

Clock Tick. k := k + 1.

Here, we use the discrepancy measure

$$D(h^{(i)}, h^{(i')}) := (1/m') \sum_{\mathbf{x} \in \mathcal{D}^{\{i,i'\}}} [h^{(i)}(\mathbf{x}) - h^{(i')}(\mathbf{x})]^2.$$

Table of Contents

Recap and Learning Goals

Applying Gradient Methods to GTVMin

Federated Learning Algorithms

Asynchronous FL Algorithms

FL as Fixed-Point Iterations

- Consider an FL net. with parametric local models.
- ► FL algorithms presented so far can be written as $\mathbf{w}^{(i,k+1)} = \mathcal{F}^{(i)}(\mathbf{w}^{(1,k)}, \dots, \mathbf{w}^{(n,k)}).$
- This is a synchronous fixed-point iteration with $\mathcal{F}^{(i)}: \mathbb{R}^{nd} \to \mathbb{R}^{d}$, for each node $i = 1, \dots, n$.
- FL algorithm is determined by its fixed-point operators \(\mathcal{F}^{(1)}, \ldots, \mathcal{F}^{(n)}\), encoding local update rules.⁷

⁷Local updates can be time-varying, i.e., using $\mathcal{F}^{(i,k)}$ varying with k.

Challenges of Synchronous FL

Implementing synchronous fixed-point iteration is challenging.

- > Devices might have **limited computational resources**.
- Evaluating the local loss may require **data collection**.
- Message passing is unreliable over wireless links.
- Devices may spontaneously join or drop out.

Modelling Asynchronous Federated Learning

Consider an FL algorithm with fixed-point operators $\mathcal{F}^{(i)}$.

We obtain an asynchronous variant with the update

$$\mathbf{w}^{(i,k+1)} = \begin{cases} \mathcal{F}^{(i)} \left(\mathbf{w}^{(1,s_{i,1}^{(k)})}, \dots, \mathbf{w}^{(n,s_{i,n}^{(k)})} \right) & \text{ for } k \in \mathcal{T}^{(i)} \\ \mathbf{w}^{(i,k)} & \text{ otherwise.} \end{cases}$$

The iteration index k enumerates update events.

- ▶ Node *i* runs local update only during events $k \in T^{(i)}$.
- **Delay** $k s_{i,i'}^{(k)}$ from i' to i during update event $k \in T^{(i)}$.

Example: Asynchronous FedGD

Consider FedGD with fixed-point operators

$$\mathcal{F}^{(i)}(\mathbf{w}^{(1)},\ldots,\mathbf{w}^{(n)}) = \mathbf{w}^{(i)} - \eta \left[\nabla L_i(\mathbf{w}^{(i)}) + 2\alpha \sum_{i' \in \mathcal{N}^{(i)}} A_{i,i'}(\mathbf{w}^{(i)} - \mathbf{w}^{(i')}) \right]$$

Asynchronous variant of FedGD is then

$$\mathbf{w}^{(i,k+1)} = \mathbf{w}^{(i,k)} - \eta \left[\nabla L_i \left(\mathbf{w}^{(i)} \right) + 2\alpha \sum_{i' \in \mathcal{N}^{(i)}} A_{i,i'} \left(\mathbf{w}^{(i,k)} - \mathbf{w}^{(i',s^{(k)}_{i,i'})} \right) \right],$$

for $k \in T^{(i)}$, and $\mathbf{w}^{(i,k+1)} = \mathbf{w}^{(i,k)}$ otherwise.

Python demo

Totally Asynchronous Algorithms Consider an asynchronous FL algorithm

$$\mathbf{w}^{(i,k+1)} = \begin{cases} \mathcal{F}^{(i)} \left(\mathbf{w}^{(1,s_{i,1}^{(k)})}, \dots, \mathbf{w}^{(n,s_{i,n}^{(k)})} \right) & \text{for } k \in T^{(i)} \\ \mathbf{w}^{(i,k)} & \text{otherwise.} \end{cases}$$

We call it **totally asynchronous** if it "works" under the following minimal assumptions:⁸

• The set $T^{(i)}$ is infinite for each i = 1, ..., n.

• The delayed update times $s_{i,i'}^{(k)}$ are unbounded,

$$\lim_{\substack{k\to\infty\\k\in T^{(i)}}} s_{i,i'}^{(k)} = \infty.$$

⁸see Ch. 6 of D. Bertsekas, J. Tsitsiklis, "Parallel and Distributed Computation: Numerical Methods," 2015.

Partially Asynchronous Algorithms

Consider some asynchronous FL algorithm

$$\mathbf{w}^{(i,k+1)} = \begin{cases} \mathcal{F}^{(i)} \left(\mathbf{w}^{(1,s_{i,i'}^{(k)})}, \dots, \mathbf{w}^{(n,s_{i,n}^{(k)})} \right) & \text{ for } k \in \mathcal{T}^{(i)} \\ \mathbf{w}^{(i,k)} & \text{ otherwise.} \end{cases}$$

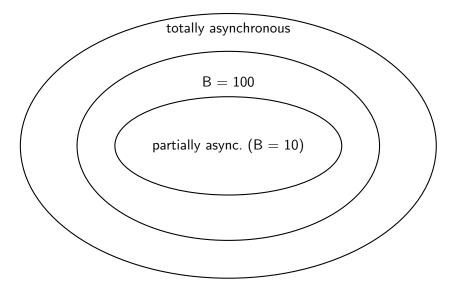
We call it **partially asynchronous**, with max. delay $B \in \mathbb{N}$, if it works as long as⁹

▶
$$\{k, \dots, k + B - 1\} \cap T^{(i)} \neq \emptyset$$
 for each $k \in \mathbb{N}$, and

► bounded delay
$$k - s_{i,i'}^{(k)} \le B$$
 for all $k \in T^{(i)}$.

⁹see Ch. 7 of D. Bertsekas, J. Tsitsiklis, "Parallel and Distributed Computation: Numerical Methods," 2015.

Hierarchy of Asynchronous Computers



When Does it Work ?

An asynchronous FL algorithm is fully specified by:

- The fixed-point operators $\mathcal{F}^{(i)}$ for i = 1, ..., n.
- The update events $T^{(i)}$, for i = 1, ..., n.

• The delays
$$k - s_{i,i'}^{(k)}$$
 for $i, i' \in \mathcal{V}$, $k \in T^{(i)}$.

What are sufficient conditions on those components such that the resulting algorithm is totally (partially) asynchronous?¹⁰

¹⁰H. R. Feyzmahdavian and M. Johansson, "On the convergence rates of asynchronous iterations," Proc. IEEE CDC, 2014

Pseudo-Contractions w.r.t. Block-Maximum Norm

Stacked local model params. $\mathbf{w} = \operatorname{stack} \{ \mathbf{w}^{(i)} \}_{i=1}^{n}$.

Define the block-maximum norm

$$\|\mathbf{w}\|_{\infty} := \max_{i=1,\dots,n} \|\mathbf{w}^{(i)}\|_i$$

FL algo. $\mathcal{F} = \left(\mathcal{F}^{(1)}, \dots, \mathcal{F}^{(n)}
ight)$ is a pseudo-contraction if 11

$$\left\|\mathcal{F}\mathbf{w} - \widehat{\mathbf{w}}\right\|_{\infty} \le \kappa \left\|\mathbf{w} - \widehat{\mathbf{w}}\right\|_{\infty} \tag{1}$$

with fixed point $\widehat{\mathbf{w}} = \mathcal{F}\widehat{\mathbf{w}}$ and some $\kappa \in [0, 1)$.

¹¹H. R. Feyzmahdavian and M. Johansson, "Asynchronous Iterations in Optimization: New Sequence Results and Sharper Algorithmic Guarantees," JMLR, 2023

A Convergence Result

Consider FL algo. being a pseudo-contraction with $\kappa\!<\!1.$ Then,

▶ it is totally asynchronous,¹² and

• for a partially asynchronous setting with max. delay B,¹³

$$\left\|\mathbf{w}^{(k)} - \widehat{\mathbf{w}}\right\|_{\infty} \le \kappa^{\frac{k}{2B+1}} \left\|\mathbf{w}^{(0)} - \widehat{\mathbf{w}}\right\|_{\infty}.$$

 \Rightarrow Convergence is faster for smaller κ and smaller B. How can we ensure this?

¹²Thm. 23 in H. R. Feyzmahdavian and M. Johansson, JMLR, 2023.
 ¹³Thm. 24 in H. R. Feyzmahdavian and M. Johansson, JMLR, 2023.

Wrap Up

- ▶ FL alg. as fixed-point iterations $\mathbf{w}^{(k+1)} = \mathcal{F}\mathbf{w}^{(k)}$.
- Fixed point of \mathcal{F} is a solution of GTVMin.
- Convergence depends on contraction properties of \mathcal{F} .
- ► Tolerant against asynchronous implementation.

The next module studies some main flavours of FL.

These flavours are characterized by specific design choices arising in FL networks and GTVMin.

Further Resources

- YouTube: @alexjung111
- LinkedIn: Alexander Jung
- GitHub: alexjungaalto

