
CS-E4740 - Federated Learning

FL Algorithms

Assoc. Prof. Alexander Jung

Spring 2025

Playlist Glossary Course Site

1 / 36

https://youtube.com/playlist?list=PLrbn2dGrLJK9rB05BObJGIcZP-g2nR28Y&si=mt005So_1CFCri9d
https://aaltodictionaryofml.github.io/ADictML_English.pdf
https://federatedlearningaalto.github.io/

Outline

Recap and Learning Goals

Applying Gradient Methods to GTVMin

Federated Learning Algorithms

Asynchronous FL Algorithms

2 / 36

Table of Contents

Recap and Learning Goals

Applying Gradient Methods to GTVMin

Federated Learning Algorithms

Asynchronous FL Algorithms

3 / 36

FL Network as a Mathematical Model for FL

D(i),H(i), Li (·)

D(i ′),H(i ′), Li ′ (·)
Ai ,i ′

▶ An FL network consists of devices i = 1, . . . , n.

▶ Some i , i ′ are connected by an edge with weight Ai ,i ′ >0.

▶ Device i generates data D(i) and trains model H(i).

▶ Data D(i) is used to construct a loss func. Li (·).1

1Can you think of other constructions of a loss function?
4 / 36

GTV Minimization (for Parametric Models)

We train local models in a collaborative fashion by solving

min
w(1),...,w(n)

n∑
i=1

Li
(
w(i)

)
+α

∑
{i ,i ′}∈E

Ai ,i ′

∥∥∥w(i) −w(i ′)
∥∥∥2

2
(GTVMin).

▶ Solution consists of learnt model params. ŵ(i).

▶ The parameter α ≥ 0 controls the clustering of ŵ(i).

▶ For α = 0, GTVMin reduces to separate ERM for each i .

▶ Large α results in ŵ(i) being nearly constant.2

2Nearly constant over each connected component of G.
5 / 36

Learning Goals

After completing this module, you know how

▶ FL alg. can be obtained from gradient descent,

▶ to implement GD as message passing,

▶ to generalize GD to handle non-parametric models,

▶ to implement asynchronous FL algorithms.

6 / 36

Table of Contents

Recap and Learning Goals

Applying Gradient Methods to GTVMin

Federated Learning Algorithms

Asynchronous FL Algorithms

7 / 36

Gradient Step for GTVMin

Starting from initial local params. w(i ,0), repeat grad. steps

w(i ,k+1)=w(i ,k) − ηk,i

[
∇Li

(
w(i ,k)

)
+2α

∑
i ′∈N (i)

Ai ,i ′
(
w(i ,k)−w(i ′,k)

)]

▶ The learning rate ηk,i determines extent of update.

▶ ∇Li
(
w(i ,k)

)
steers the update towards min. local loss.

▶
(
w(i ,k)−w(i ′,k)

)
steers to agree with neighbours.

▶ αAi ,i ′ balances those two steering effects.

8 / 36

Synchronous Operation

The gradient step

w(i ,k+1)=w(i ,k) − ηk,i

[
∇Li

(
w(i ,k)

)
+2α

∑
i ′∈N (i)

Ai ,i ′
(
w(i ,k)−w(i ′,k)

)]
has to be carried out by all nodes i = 1, . . . , n.

When these (local) gradient steps are completed, each node
shares its new model params. with its neighbours.

After sharing the model params., start new iteration k :=k+1.

9 / 36

Message Passing Implementation

i

i ′

w(i ,k)w(i ′,k)

i

i ′

compute w(i ,k+1)

compute w(i ′,k+1)

Ai ,i ′

i

i ′

w(i ,k+1)w(i ′,k+1)

flow of time

10 / 36

Table of Contents

Recap and Learning Goals

Applying Gradient Methods to GTVMin

Federated Learning Algorithms

Asynchronous FL Algorithms

11 / 36

Federated Gradient Descent (FedGD)

Each node i = 1, . . . , n initializes

▶ local model params. w(i ,0) := 0, and

▶ iteration counter k := 0.

Repeat the following steps at each node i :

▶ Send w(i ,k) to all neighbours N (i).

▶ Do a gradient step.

▶ Increment iteration counter k := k + 1.

CAUTION: Nodes must execute steps synchronously!

12 / 36

Implementing FedGD with a Sync-Server

server i = 1 i = 2
Send w (1,0)

Send w (2,0)

SYNC

SYNC

gradstep gradstep
Send w (1,1)

Send w (2,1)

SYNC

SYNC

Python demo

13 / 36

https://github.com/FederatedLearningAalto/FederatedLearningAalto.github.io/tree/master/assets/DemoGDSync

Federated Stochastic Gradient Descent (FedSGD)
▶ Consider FL network with node i carrying the local

dataset

D(i) =

{(
x(i ,1), y (i ,1)

)
, . . . ,

(
x(i ,mi), y (i ,mi)

)}
.

▶ Node i uses local loss function

Li
(
w(i)

)
:= (1/mi)

mi∑
r=1

(
y (i ,r) −

(
w(i)

)T
x(i ,r)

)2

.

▶ FedGD requires to compute gradient,

∇Li
(
w(i)

)
= (−2/mi)

mi∑
r=1

x(i ,r)
(
y (i ,r) −

(
w(i)

)T
x(i ,r)

)
.

14 / 36

Stochastic Gradient Approximation

For some applications, the computation of
mi∑
r=1

x(i ,r)
(
y (i ,r) −

(
w(i)

)T
x(i ,r)

)
is intractable, e.g., too many data points or too slow access.

⇒ Use instead a sum over random subset B⊆{1, . . . ,mi},∑
r∈B

x(i ,r)
(
y (i ,r) −

(
w(i)

)T
x(i ,r)

)
.

We refer to B as batch with batch size |B|.

15 / 36

Federated Averaging (FedAvg)

▶ Some FL applications use common model at all nodes,

w(i) = w(i ′) ∀ i , i ′ ∈ V .

▶ GTVMin becomes constrained optimization problem:

min
w(1),...,w(n)

∑
i∈V

Li
(
w(i)

)
s.t. w(i) = w(i ′) ∀ i , i ′ ∈ V .

▶ For diffable Li
(
w(i)

)
we can apply projected GD.

▶ Projection step amounts to averaging (1/n)
∑n

i=1w
(i).

16 / 36

(Almost) FedAvg

Init. counter (clock) k := 0 and model params ŵ := 0.

1. Broadcast. Server sends ŵ to all nodes i ∈ V .

2. Local Gradient Step. Each node computes

w(i ,k) = ŵ − ηk,i∇Li (ŵ) .

3. Collect. Nodes send w(i ,k) back to server.

4. Aggregate. Server computes ŵ := (1/n)
∑n

i=1w
(i ,k).

5. Clock Tick. Server increments k := k + 1. Go to step 1.

17 / 36

FedAvg

We obtain FedAvg via the following modifications:3

▶ Use (stochastic) approximations of gradients.

▶ Instead of single GD step, compute several GD steps.

▶ Each iteration involves only a subset of nodes.

Python demo

3B. McMahan et.al., Communication-Efficient Learning of Deep
Networks from Decentralized Data, PMLR, 2017

18 / 36

https://github.com/FederatedLearningAalto/FederatedLearningAalto.github.io/tree/master/assets/DemoFedAvg

FedProx

FedProx replaces GD steps in FedAvg with4

w(i) := argmin
v∈Rd

[
Li (v) + (1/η) ∥v − ŵ∥22

]
with current global model params ŵ.

Empirical studies found FedProx to result in more robust FL
systems compared to FedAvg.

FedProx seems to require less tuning for FL networks with
devices having varying computational power.

4T. Li, et.al, Federated Optimization in Heterogeneous Networks,
Proc. of Machine Learning and Systems 2, 2020.

19 / 36

Federated Relaxation (FedRelax)

▶ Consider GTVMin objective function

f
(
w(1), . . . ,w(n)

)
=

n∑
i=1

Li
(
w(i)

)
+α

∑
{i ,i ′}∈E

Ai ,i ′

∥∥∥w(i) −w(i ′)
∥∥∥2

2
.

▶ Complicated due to coupling terms Ai ,i ′
∥∥w(i)−w(i ′)

∥∥2

2
.

▶ Without coupling, GTVMin would be much easier.

▶ Optimize f (·) w.r.t. w(i), holding
{
w(i ′)

}
i ′∈V\{i} fixed!5

5Similar idea is used in the Jacobi method for solving linear equations.
20 / 36

FedRelax for Parametric Models

▶ Init. Set counter k :=0, local model params. ŵ(i)
0 :=0.

▶ Repeat until stopping criterion:

▶ Each node i shares ŵ
(i)
k with neighbours N (i).

▶ Local Update. Each node i computes6

w(i ,k+1) := argmin
w(i)∈Rd

Li

(
w(i)

)
+α

∑
i ′∈N (i)

Ai ,i ′

∥∥∥w(i)−w(i ′,k)
∥∥∥2
2
.

▶ Clock Tick. k := k + 1.

6Note the similarity of local update with ridge regression.
21 / 36

FedRelax for Non-Parametric Models

▶ Init. k :=0, construct test-set D{i ,i ′} for each {i , i ′} ∈ E

▶ Repeat until stopping criterion:

▶ Each i shares h(i ,k)(x) for each x ∈ D{i ,i ′} and i ′ ∈ N (i).

▶ Local Update. Each node i computes

h(i ,k+1) ∈ argmin
h(i)∈H(i)

Li

(
h(i)

)
+ α

∑
i ′∈N (i)

Ai ,i ′D
(
h(i), h(i

′,k)
)
.

▶ Clock Tick. k := k + 1.

Here, we use the discrepancy measure

D
(
h(i), h(i

′)
)
:= (1/m′)

∑
x∈D{i,i′}

[
h(i)

(
x
)
− h(i

′)
(
x
)]2

.

22 / 36

Table of Contents

Recap and Learning Goals

Applying Gradient Methods to GTVMin

Federated Learning Algorithms

Asynchronous FL Algorithms

23 / 36

FL as Fixed-Point Iterations

▶ Consider an FL net. with parametric local models.

▶ FL algorithms presented so far can be written as

w(i ,k+1) = F (i)
(
w(1,k), . . . ,w(n,k)

)
.

▶ This is a synchronous fixed-point iteration with

F (i) : Rnd → Rd , for each node i = 1, . . . , n.

▶ FL algorithm is determined by its fixed-point
operators F (1), . . . ,F (n), encoding local update rules.7

7Local updates can be time-varying, i.e., using F (i,k) varying with k.
24 / 36

Challenges of Synchronous FL

Implementing synchronous fixed-point iteration is challenging.

▶ Devices might have limited computational resources.

▶ Evaluating the local loss may require data collection.

▶ Message passing is unreliable over wireless links.

▶ Devices may spontaneously join or drop out.

25 / 36

Modelling Asynchronous Federated Learning

Consider an FL algorithm with fixed-point operators F (i).

We obtain an asynchronous variant with the update

w(i ,k+1) =

{
F (i)

(
w(1,s

(k)
i,1), . . . ,w(n,s

(k)
i,n)

)
for k ∈ T (i)

w(i ,k) otherwise.

▶ The iteration index k enumerates update events.

▶ Node i runs local update only during events k∈T (i).

▶ Delay k−s
(k)
i ,i ′ from i ′ to i during update event k ∈ T (i).

26 / 36

Example: Asynchronous FedGD

Consider FedGD with fixed-point operators

F (i)
(
w(1), . . . ,w(n)

)
= w(i)−η

[
∇Li

(
w(i)

)
+2α

∑
i ′∈N (i)

Ai ,i ′
(
w(i)−w(i ′)

)]
.

Asynchronous variant of FedGD is then

w(i ,k+1) = w(i ,k)−η

[
∇Li

(
w(i)

)
+2α

∑
i ′∈N (i)

Ai ,i ′
(
w(i ,k)−w(i ′,s

(k)

i,i′)
)]
,

for k ∈ T (i), and w(i ,k+1) = w(i ,k) otherwise.

Python demo

27 / 36

https://github.com/FederatedLearningAalto/FederatedLearningAalto.github.io/blob/master/assets/DemoGDAsync

Totally Asynchronous Algorithms
Consider an asynchronous FL algorithm

w(i ,k+1) =

{
F (i)

(
w(1,s

(k)
i,1), . . . ,w(n,s

(k)
i,n)

)
for k ∈ T (i)

w(i ,k) otherwise.

We call it totally asynchronous if it “works” under the
following minimal assumptions:8

▶ The set T (i) is infinite for each i = 1, . . . , n.

▶ The delayed update times s
(k)
i ,i ′ are unbounded,

lim
k→∞
k∈T (i)

s
(k)
i ,i ′ = ∞.

8see Ch. 6 of D. Bertsekas, J. Tsitsiklis, “Parallel and Distributed
Computation: Numerical Methods,” 2015.

28 / 36

Partially Asynchronous Algorithms

Consider some asynchronous FL algorithm

w(i ,k+1) =

{
F (i)

(
w

(1,s
(k)

i,i′), . . . ,w(n,s
(k)
i,n)

)
for k ∈ T (i)

w(i ,k) otherwise.

We call it partially asynchronous, with max. delay B ∈ N, if
it works as long as9

▶ {k , . . . , k + B − 1} ∩ T (i) ̸= ∅ for each k ∈ N, and

▶ bounded delay k − s
(k)
i ,i ′ ≤ B for all k ∈ T (i).

9see Ch. 7 of D. Bertsekas, J. Tsitsiklis, “Parallel and Distributed
Computation: Numerical Methods,” 2015.

29 / 36

Hierarchy of Asynchronous Computers

totally asynchronous

B = 100

partially async. (B = 10)

30 / 36

When Does it Work ?

An asynchronous FL algorithm is fully specified by:

▶ The fixed-point operators F (i) for i = 1, . . . , n.

▶ The update events T (i), for i = 1, . . . , n.

▶ The delays k − s
(k)
i ,i ′ for i , i ′ ∈ V , k ∈ T (i).

What are sufficient conditions on those components such that
the resulting algorithm is totally (partially) asynchronous?10

10H. R. Feyzmahdavian and M. Johansson, ”On the convergence rates
of asynchronous iterations,” Proc. IEEE CDC, 2014

31 / 36

Pseudo-Contractions w.r.t. Block-Maximum Norm

▶ Stacked local model params. w = stack
{
w(i)

}n

i=1
.

▶ Define the block-maximum norm

∥w∥∞ := max
i=1,...,n

∥∥w(i)
∥∥
i
.

FL algo. F =
(
F (1), . . . ,F (n)

)
is a pseudo-contraction if11

∥Fw − ŵ∥∞ ≤ κ ∥w − ŵ∥∞ (1)

with fixed point ŵ = Fŵ and some κ ∈ [0, 1).

11H. R. Feyzmahdavian and M. Johansson, ”Asynchronous Iterations in
Optimization: New Sequence Results and Sharper Algorithmic
Guarantees,” JMLR, 2023

32 / 36

A Convergence Result

Consider FL algo. being a pseudo-contraction with κ<1.
Then,

▶ it is totally asynchronous,12 and

▶ for a partially asynchronous setting with max. delay B ,13∥∥w(k) − ŵ
∥∥
∞ ≤ κ

k
2B+1

∥∥w(0) − ŵ
∥∥
∞ .

⇒ Convergence is faster for smaller κ and smaller B .

How can we ensure this?

12Thm. 23 in H. R. Feyzmahdavian and M. Johansson, JMLR, 2023.
13Thm. 24 in H. R. Feyzmahdavian and M. Johansson, JMLR, 2023.

33 / 36

Wrap Up

▶ FL alg. as fixed-point iterations w(k+1) = Fw(k).

▶ Fixed point of F is a solution of GTVMin.

▶ Convergence depends on contraction properties of F .

▶ Tolerant against asynchronous implementation.

34 / 36

What’s Next?

The next module studies some main
flavours of FL.

These flavours are characterized by specific

design choices arising in FL networks and

GTVMin.

35 / 36

Further Resources

▶ YouTube: @alexjung111

▶ LinkedIn: Alexander Jung

▶ GitHub: alexjungaalto

36 / 36

https://www.youtube.com/@alexjung111
https://www.linkedin.com/in/aljung/
https://github.com/alexjungaalto
https://www.youtube.com/@alexjung111
https://www.linkedin.com/in/aljung/
https://github.com/alexjungaalto

	Recap and Learning Goals
	Applying Gradient Methods to GTVMin
	Federated Learning Algorithms
	Asynchronous FL Algorithms

