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An FL Network

Lo (), wl)
Aj i N
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» FL network consisting of devices i=1,...,n.
» Some i, i’ connected by an edge with weight A; » >0.
» Device i learns model params. w() € R€.

» Usefulness of w(?) measured by some local loss, e.g.,

m; 2
L (w) = L 3 (y(,-,r) _ (w(i))Tx(m) .

mj —
r=1
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FL via Regularization

> Each node carries a linear model h"™)(x):=xTw(.
» Each node carries m; labelled data points.

» Node-wise ML fails if m; < d (overfitting).

Idea:

Use the neighbours N'():={i": {i,i"} €€} to regularize!
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FL via Regularization (ctd.)

As for basic ML, regularization can be done either via

» Data augmentation using data from the neighbours.

» Prune local models by requiring them to agree across
edges.

» Add a penalty term to the local loss function.
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Building a Penalty Across Edges

» Consider two nodes i, i’ with local datasets D), D).

> Assume there is a non-empty overlap D) 0 D).

We penalize the disagreement on DU:7):

>0 (K6 — A e0)T = 3 (< — xTw)’

N xe D)

= (w(i) _ W(i’))T{ Z XTX} (w(i) _ w(i/)).

xeD(i")
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Generalized TV Minimization (GTVMin)

Learn model params. w() by balancing local loss and GTV

min > [Lf (W) +a D Ay(w? - w("'))}

M. wmerd
W WIRERT S 1 {ii"ye€

» Penalty function ¢(u) is a design choice.
» Previous slide used ¢(u) = u"Qu with Q := > xxT.
> Our focus is on the choice ¢(u) := ||ulf3.

» Another popular choice is ¢(u) := |Jul|.1

1Y SarcheshmehPour, et.al, " Clustered Federated Learning via
Generalized Total Variation Minimization,” in IEEE Trans. Sig. Proc,
2023, doi: 10.1109/TSP.2023.3322848.
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Model-Agnostic GTVMin

Replacing ¢(w) — w(")) with the disagreement measure
D (A, A" = Z (hD(x) — h(i/)(x))z
xe'D(i,i’)
yields a model-agnostic generalization of GTVMin
; () . (i) pl")
i T 00) s 5 400040
ey i€V {i,i"}e€

This allows for VERY heterogeneous FL networks, e.g.,
HD = lin.model, H® = LLM, H®) = decision tree.
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Computational Aspects

min Z |:Li (W) + o Z A i (W) — w)
=1

{i,irye€

» How can we solve it efficiently over an FL network?
» How much compute/comm. is needed at least?

» What is the effect of different choices for the edges &,
loss funcs. L;(+), and GTV penalty ¢?
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Computational Aspects - Smooth GTVmin

Consider a GTVMin instance

" min 2; [L,- (w(i)) + Z Aiir wl) — w(

2
. w(neRd 2}
ey W GR i— {[7[’}65

with a smooth (differentiable) L; ().

If we use (distributed) gradient descent to solve GTVMin:
» How many iterations should we run?
» What is a good choice for the learning rate?

» How to communicate gradients over comm. links?
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Characterizing GTVMin Solutions

» Consider GTVMin solution w() eR?, for i =1,..., n.

» We stack them into a long vector

wo=(w® W)’ e R

Y

» We characterize the solutions as a fixed-point of some F,

w solves GTVMin & w = Fw

» The operator F is not unique (design choice!).
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Convex and Smooth GTVMin

Consider GTVMin with a smooth and convex L; (-),

n

W min ; |:L, (W(I)) + « Z A;V,'/

{i,i"}e&

w® — @

2

|

w solves (1) & w = Fw

F maps u=(u®, .., u(”))T to v= (v, .. ,v(”))T,

v() = —n{w N +20> " Any (u —ul” )]

ireN)

Different choices for “step-size” n > 0 yield different F.
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Fixed-Point lterations

Q: How to compute a fixed point w of F7?
A: Start with initial guess w(® and iterate

wk) = FwlY for k=1,2,....
If F is firmly non-expansive lim,_,.. w(¥) = w2

If F is even contractive with constant x < 1,

W — ], < w* W —wl],.

2H. Bauschke, P. Combettes, " Convex Analysis and Monotone
Operator Theory in Hilbert Spaces,” Springer, 2017.
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Gradient Descent as Fixed-Point lteration

GD for smooth and convex objective function f(w),

w = wk-D 7 f (wkD)

is a fixed-point iteration with (" : w — w — nVf(w).

» In general, F( is neither firmly non-exp. nor contractive.
» Convergence can still be ensured if 7 is sufficiently small.

» E.g., using learning rate 7, = 1/k for smooth f(w).
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Statistical Aspects
» GTVMin solution yields model params. w(), i =1,... n
» How useful are these model params. ?
> The local loss L; (w()) can be misleading (why?)

> Better to use aggregate > ;oo Li (W(’)), with cluster

18/29



Clustering of GTVMin®

moderate « large «

3Y. SarcheshmehPour, Y. Tian, L. Zhang and A. Jung, " Clustered
Federated Learning via Generalized Total Variation Minimization,” in
IEEE Transactions on Signal Processing, 2023,
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Analysis of Clustering - Assumptions

» Consider a connected FL network G with A\, > 0.
» Assume loss funcs. satisfy min,cgs Y 0, Li (v) <e

» Use GTVMin to learn local params. w).

> Define the variation w():=w() -1 57 w0,

n
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Analysis of Clustering - Upper Bound

The variation w(") is upper bounded as
L2 L €
SO <

This bound involves the
» connectivity of FL network (via \,),
» the properties of local loss functions (via €), and

» the GTVMin parameter «.

A large ), results in nearly identical local params. w() ~0.
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Interpretations

We next discuss some interpretations of GTVMin

min Z [L; (W(i)) + o Z A w — w(
1

2}
1), ... wneRd 2
wib) L wlneR ; {i,i’} £

for some FL network with weighted undirected graph G and
smooth and convex loss func. L; (w()).

We assume that there exists a solution w") ... w(". (Do we
really need to make this assumption?)

23/29



Electronic Circuit
Consider a node i with neighbours ') ={i" i"}.

LR Go)
W) e ANN\,—e w (")
R,
Rs
i

1
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Vector-Valued Flows®*

~
1
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/ .\ @

Vector-valued flow ul"") := V¢ (u)]

u=w()—w(")"

4AJ, "On the Duality Between Network Flows and Network Lasso,” in
IEEE Signal Processing Letters, 2020.
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Locally Weighted Learning

GTVMin delivers local params. w() that are clustered.

For node i, GTVmin is the same as locally weighted learning®

min Ly (w?) pir with p :{ e

weRd 4 0 , otherwise.

5C. G. Atkeson, S. A. Schaal and Andrew W, Moore, Locally Weighted
Learning, Al Review,Volume 11, Pages 11-73 (Kluwer Publishers) 1997.
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Generalized Convex Clustering®

2@
O

w@

3)0 w(3)AW(1> Oa®
o H)Z”w ~al ||2+ozZHw( ~w®

i,i'ey

D. Sun, et.al, Convex Clustering: Model, Theoretical Guarantee and
Efficient Algorithm, JMLR, 2021.
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What's Next?

The next module applies optimization
methods to solve GTVMin.

We can implement these methods as message
passing over the edges of an FL network.
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Further Resources

» YouTube: Q@alexjunglll
» LinkedIn: Alexander Jung
» GitHub: alexjungaalto

29/29


https://www.youtube.com/@alexjung111
https://www.linkedin.com/in/aljung/
https://github.com/alexjungaalto
https://www.youtube.com/@alexjung111
https://www.linkedin.com/in/aljung/
https://github.com/alexjungaalto

	Formulating FL as Optimization
	Computational Aspects
	Statistical Aspects
	Interpretations

