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An FL Network

Li (·) ,w(i)

Li ′ (·) ,w(i ′)

Ai ,i ′

▶ FL network consisting of devices i=1, . . . , n.

▶ Some i , i ′ connected by an edge with weight Ai ,i ′ >0.

▶ Device i learns model params. w(i) ∈ Rd .

▶ Usefulness of w(i) measured by some local loss, e.g.,

Li
(
w(i)

)
:=

1

mi

mi∑
r=1

(
y (i ,r) −

(
w(i)

)T
x(i ,r)

)2

.
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FL via Regularization

▶ Each node carries a linear model h(w
(i))(x) :=xTw(i).

▶ Each node carries mi labelled data points.

▶ Node-wise ML fails if mi ≪ d (overfitting).

Idea:

Use the neighbours N (i) :={i ′ : {i , i ′}∈E} to regularize!
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FL via Regularization (ctd.)

As for basic ML, regularization can be done either via

▶ Data augmentation using data from the neighbours.

▶ Prune local models by requiring them to agree across
edges.

▶ Add a penalty term to the local loss function.

6 / 29



Building a Penalty Across Edges

▶ Consider two nodes i , i ′ with local datasets D(i),D(i ′).

▶ Assume there is a non-empty overlap D(i) ∩ D(i ′).

h(w
(i))

D(i ,i ′)

h(w
(i′))

We penalize the disagreement on D(i ,i ′):∑
x∈D(i,i′)

(
h(w

(i))(x)− h(w
(i′))(x)

)2
=

∑
x∈D(i,i′)

(
xTw(i) − xTw(i ′)

)2
=

(
w(i) −w(i ′)

)T[ ∑
x∈D(i,i′)

xTx

](
w(i) −w(i ′)

)
.
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Generalized TV Minimization (GTVMin)
Learn model params. ŵ(i) by balancing local loss and GTV

min
w(1),...,w(n)∈Rd

n∑
i=1

[
Li
(
w(i)

)
+α

∑
{i ,i ′}∈E

Ai ,i ′ϕ
(
w(i) −w(i ′)

)]

▶ Penalty function ϕ(u) is a design choice.

▶ Previous slide used ϕ(u) = uTQu with Q :=
∑

x∈D(i,i′)
xxT .

▶ Our focus is on the choice ϕ(u) := ∥u∥22.

▶ Another popular choice is ϕ(u) := ∥u∥.1

1Y. SarcheshmehPour, et.al, ”Clustered Federated Learning via
Generalized Total Variation Minimization,” in IEEE Trans. Sig. Proc,
2023, doi: 10.1109/TSP.2023.3322848.
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Model-Agnostic GTVMin

Replacing ϕ
(
w(i) −w(i ′)

)
with the disagreement measure

D
(
h(i), h(i

′)
)
:=

∑
x∈D(i,i′)

(
h(i)(x)− h(i

′)(x)
)2

yields a model-agnostic generalization of GTVMin

min
h(i)∈H(i)

i∈V

∑
i∈V

[
Li
(
h(i)

)
+α

∑
{i ,i ′}∈E

Ai ,i ′D
(
h(i), h(i

′)
)]
.

This allows for VERY heterogeneous FL networks, e.g.,

H(1) = lin.model, H(2) = LLM, H(3) = decision tree.
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Computational Aspects

min
w(1),...,w(n)∈Rd

n∑
i=1

[
Li
(
w(i)

)
+ α

∑
{i ,i ′}∈E

Ai ,i ′ϕ
(
w(i) −w(i ′)

)]

▶ How can we solve it efficiently over an FL network?

▶ How much compute/comm. is needed at least?

▶ What is the effect of different choices for the edges E ,
loss funcs. Li (·), and GTV penalty ϕ?
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Computational Aspects - Smooth GTVmin

Consider a GTVMin instance

min
w(1),...,w(n)∈Rd

n∑
i=1

[
Li
(
w(i)

)
+ α

∑
{i ,i ′}∈E

Ai ,i ′

∥∥∥w(i) −w(i ′)
∥∥∥2

2

]

with a smooth (differentiable) Li (·).

If we use (distributed) gradient descent to solve GTVMin:

▶ How many iterations should we run?

▶ What is a good choice for the learning rate?

▶ How to communicate gradients over comm. links?
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Characterizing GTVMin Solutions

▶ Consider GTVMin solution ŵ(i)∈Rd , for i = 1, . . . , n.

▶ We stack them into a long vector

ŵ :=
(
ŵ(1), . . . , ŵ(n)

)T ∈ Rdn.

▶ We characterize the solutions as a fixed-point of some F ,

ŵ solves GTVMin ⇔ ŵ = Fŵ

▶ The operator F is not unique (design choice!).
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Convex and Smooth GTVMin

Consider GTVMin with a smooth and convex Li (·),

min
w(1),...,w(n)∈Rd

n∑
i=1

[
Li
(
w(i)

)
+ α

∑
{i ,i ′}∈E

Ai ,i ′

∥∥∥w(i) −w(i ′)
∥∥∥2

2

]
(1)

ŵ solves (1) ⇔ ŵ = F (η)ŵ

F (η) maps u=
(
u(1), . . . ,u(n)

)T
to v=

(
v(1), . . . , v(n)

)T
,

v(i) = u(i)−η

[
∇Li

(
u(i)

)
+2α

∑
i ′∈N (i)

Ai ,i ′
(
u(i)−u(i ′)

)]
.

Different choices for “step-size” η > 0 yield different F .
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Fixed-Point Iterations

Q: How to compute a fixed point ŵ of F?

A: Start with initial guess ŵ(0) and iterate

ŵ(k) = Fŵ(k−1), for k = 1, 2, . . . .

If F is firmly non-expansive limk→∞ ŵ(k) = ŵ.2

If F is even contractive with constant κ < 1,∥∥ŵ(k) − ŵ
∥∥
2
≤ κk

∥∥ŵ(0) − ŵ
∥∥
2
.

2H. Bauschke, P. Combettes, ”Convex Analysis and Monotone
Operator Theory in Hilbert Spaces,” Springer, 2017.
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Gradient Descent as Fixed-Point Iteration

GD for smooth and convex objective function f (w),

w(k) = w(k−1) − η∇f
(
w(k−1)

)
is a fixed-point iteration with F (η) : w 7→ w − η∇f (w).

▶ In general, F (η) is neither firmly non-exp. nor contractive.

▶ Convergence can still be ensured if η is sufficiently small.

▶ E.g., using learning rate ηk = 1/k for smooth f
(
w
)
.
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Statistical Aspects

▶ GTVMin solution yields model params. ŵ(i), i = 1, . . . , n

▶ How useful are these model params. ?

▶ The local loss Li
(
ŵ(i)

)
can be misleading (why?)

▶ Better to use aggregate
∑

i∈C(i) Li
(
ŵ(i)

)
, with cluster

C(i) :=
{
i ′ : ŵ(i) ≈ ŵ(i ′)

}
.

i

i ′
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Clustering of GTVMin3

C
small α

C

moderate α

C

large α

3Y. SarcheshmehPour, Y. Tian, L. Zhang and A. Jung, ”Clustered
Federated Learning via Generalized Total Variation Minimization,” in
IEEE Transactions on Signal Processing, 2023,
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Analysis of Clustering - Assumptions

▶ Consider a connected FL network G with λ2>0.

▶ Assume loss funcs. satisfy minv∈Rd

∑n
i=1 Li (v)≤ε

▶ Use GTVMin to learn local params. ŵ(i).

▶ Define the variation w̃(i) :=ŵ(i)− 1
n

∑n
i=1 ŵ

(i).

2

ŵ(2)

1
n

n∑
i=1

ŵ(i)

w̃(4)
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Analysis of Clustering - Upper Bound

The variation w̃(i) is upper bounded as
n∑

i=1

∥∥w̃(i)
∥∥2

2
≤ ε

αλ2
.

This bound involves the

▶ connectivity of FL network (via λ2),

▶ the properties of local loss functions (via ε), and

▶ the GTVMin parameter α.

A large αλ2 results in nearly identical local params. w̃(i)≈0.
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Interpretations

We next discuss some interpretations of GTVMin

min
w(1),...,w(n)∈Rd

n∑
i=1

[
Li
(
w(i)

)
+ α

∑
{i ,i ′}∈E

Ai ,i ′

∥∥∥w(i) −w(i ′)
∥∥∥2

2

]

for some FL network with weighted undirected graph G and
smooth and convex loss func. Li

(
w(i)

)
.

We assume that there exists a solution ŵ(1), . . . , ŵ(n). (Do we
really need to make this assumption?)
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Electronic Circuit
Consider a node i with neighbours N (i)={i ′, i ′′}.

V

Rs

I

R1I1

R2
I2

ŵ(i ′)
ŵ(i)

ŵ(i ′′)

−∇Li
(
ŵ(i)

)︸ ︷︷ ︸
I

=

[
Ai ,i ′

(
ŵ(i)−ŵ(i ′)

)︸ ︷︷ ︸
I1

+Ai ,i ′′
(
ŵ(i)−ŵ(i ′′)

)︸ ︷︷ ︸
I2

]
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Vector-Valued Flows4

i
i ′ i ′′

i ′′′

u(i ,i ′) u(i ,i ′′)

u(i ,i ′′′)

−∇Li
(
ŵ(i)

)

Vector-valued flow u(i ,i ′) := ∇ϕ
(
u
)∣∣

u=ŵ(i)−ŵ(i′) .

4AJ, ”On the Duality Between Network Flows and Network Lasso,” in
IEEE Signal Processing Letters, 2020.
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Locally Weighted Learning

GTVMin delivers local params. ŵ(i) that are clustered.

C(i) :=
{
i ′ ∈ V : ŵ(i) ≈ ŵ(i ′)

}
.

i

i ′

For node i , GTVmin is the same as locally weighted learning5

min
w(i)∈Rd

n∑
i ′=1

Li ′
(
w(i)

)
ρi ′ with ρi ′ =

{
1 if i ′ ∈ C(i)

0 , otherwise.

5C. G. Atkeson, S. A. Schaal and Andrew W, Moore, Locally Weighted
Learning, AI Review,Volume 11, Pages 11-73 (Kluwer Publishers) 1997.
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Generalized Convex Clustering6

a(1)

a(2)

a(3) w(1)

w(2)

w(3)

min
w(1),...,w(n)

n∑
i=1

∥∥w(i) − a(i)
∥∥2

2
+ α

∑
i ,i ′∈V

∥∥∥w(i) −w(i ′)
∥∥∥
2
.

6D. Sun, et.al, Convex Clustering: Model, Theoretical Guarantee and
Efficient Algorithm, JMLR, 2021.
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What’s Next?

The next module applies optimization

methods to solve GTVMin.

We can implement these methods as message

passing over the edges of an FL network.
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Further Resources

▶ YouTube: @alexjung111

▶ LinkedIn: Alexander Jung

▶ GitHub: alexjungaalto
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