CS-E4740 - Federated Learning FL Flavours

Assoc. Prof. Alexander Jung

Spring 2025

Playlist

Glossary

Course Site

Outline

Recap and Learning Goals

Single-Model (Global) FL

Horizontal FL

Vertical FL

Clustered FL

Personalized FL

Recap and Learning Goals

Single-Model (Global) FL

Horizontal FL

Vertical FL

Clustered FL

Personalized FL

FL Network as Mathematical Model for FL

- An FL network consists of devices i = 1, ..., n.
- Some *i*, *i*' connected by edge with the weight $A_{i,i'} > 0$.
- Device *i* generates data $\mathcal{D}^{(i)}$ and trains model $\mathcal{H}^{(i)}$.
- ▶ Data $\mathcal{D}^{(i)}$ used to construct loss func. $L_i(\cdot)$.

GTV Minimization (for Parametric Models)

We train local models in a collaborative fashion by solving

$$\min_{\mathbf{w}^{(1)},\ldots,\mathbf{w}^{(n)}} \sum_{i=1}^{n} L_i\left(\mathbf{w}^{(i)}\right) + \alpha \sum_{\{i,i'\}\in\mathcal{E}} A_{i,i'} \left\|\mathbf{w}^{(i)} - \mathbf{w}^{(i')}\right\|_2^2 \quad (\mathsf{GTVMin}).$$

- Solution consists of learnt modelparams. $\widehat{\mathbf{w}}^{(i)}$.
- Tuning parameter $\alpha \geq 0$ controls clustering of $\widehat{\mathbf{w}}^{(i)}$.
- For $\alpha = 0$, GTVMin reduces to separate ERM for each *i*.
- lncreasing α makes $\widehat{\mathbf{w}}^{(i)}$ more similar across nodes *i*.

Learning Goals

After completing this module, you know which GTVMin design choices result in

- single-model FL,
- horizontal FL,
- vertical FL,
- clustered FL,
- personalized FL.

Recap and Learning Goals

Single-Model (Global) FL

Horizontal FL

Vertical FL

Clustered FL

Personalized FL

Basic Workflow

- Server hold global model params. $\mathbf{w}^{(k)} \in \mathbb{R}^d$.
- Clients i = 1, ..., i carry local datasets $\mathcal{D}^{(i)}$.
- Use $\mathcal{D}^{(i)}$ to compute update $\mathbf{w}^{(k)} \mapsto \mathbf{w}^{(i,k)}$.¹
- Sever aggregates $\mathbf{w}^{(i,k)}$ to update $\mathbf{w}^{(k)} \mapsto \mathbf{w}^{(k+1)}$.

¹How can you use a dataset to update model parameter?

Server-Client Implementation

• Each client *i* computes $\mathbf{w}^{(i,k)}$ using $\mathbf{w}^{(k)}$ and $\mathcal{D}^{(i)}$.

• Server aggregates $\mathbf{w}^{(1,k)}, \ldots, \mathbf{w}^{(n,k)}$ to compute $\mathbf{w}^{(k+1)}$.

Equivalent GTVMin Instance

GTVMin on a star-shaped FL network with n + 1 nodes,

$$\left\{\widehat{\mathbf{w}}^{(i)}\right\}_{i=1}^{n+1} \in \operatorname*{argmin}_{\mathbf{w}^{(1)},\ldots,\mathbf{w}^{(n+1)}} \sum_{i \in \mathcal{V}} L_i\left(\mathbf{w}^{(i)}\right) + \alpha \sum_{\{i,i'\} \in \mathcal{E}} A_{i,i'} \left\|\mathbf{w}^{(i)} - \mathbf{w}^{(i')}\right\|_2^2.$$

Node n+1 has trivial loss func. $L_{n+1}(\cdot) = 0$.

Recap and Learning Goals

Single-Model (Global) FL

Horizontal FL

Vertical FL

Clustered FL

Personalized FL

Horizontal FL

Local datasets are (overlapping) subsets of a global dataset.²

²How could we define similarity between such local datasets?

Examples of Horizontal FL

- Healthcare: Local datasets consist of patient records stored at different hospitals.
- Finance: Local datasets correspond to account records maintained by individual banks.
- Condition Monitoring: Local datasets include sensor recordings collected by car manufacturers.
- Smart Grids: Local datasets comprise electricity consumption data gathered by power suppliers.
- Restaurants: Local datasets consist of customer reviews for specific restaurants.

Horizontal FL via GTVMin

$$\left\{ \widehat{\mathbf{w}}^{(i)} \right\}_{i=1}^{n} \in \underset{\mathbf{w}^{(1)}, \dots, \mathbf{w}^{(n)}}{\operatorname{argmin}} \sum_{i \in \mathcal{V}} L_{i} \left(\mathbf{w}^{(i)} \right) + \alpha \sum_{\{i, i'\} \in \mathcal{E}} A_{i, i'} \left\| \mathbf{w}^{(i)} - \mathbf{w}^{(i')} \right\|_{2}^{2}.$$

Local loss func. $L_{i} \left(\mathbf{w}^{(i)} \right) := \frac{1}{|\mathcal{D}^{(i)}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}^{(i)}} L \left((\mathbf{x}, y), \mathbf{w}^{(i)} \right).$

Choose edge weights $A_{i,i'}$ based on overlap $|\mathcal{D}^{(i)} \cap \mathcal{D}^{(i')}|$.

For $\alpha \to \infty$, we obtain identical local model params. which are copies of global model params. $\widehat{\mathbf{w}} = \mathbf{w}^{(i)}$ for all $i = 1, \dots, n$.

Recap and Learning Goals

Single-Model (Global) FL

Horizontal FL

Vertical FL

Clustered FL

Personalized FL

Vertical FL (VFL)

Some VFL Applications

- Healthcare: Different healthcare providers store distinct records of the same patient.
- **Finance**: Banks, tax authorities, and other financial institutions hold different data on the same individual.
- **Government**: Social insurance, courts, and tax offices maintain separate databases for the same citizen.
- Retail: A single customer has multiple accounts across different loyalty programs (retailers, online marketplaces, etc.).

VFL for Linear Regression

• We want to learn params. $\mathbf{w} \in \mathbb{R}^d$ of a linear model

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \sum_{j=1}^{n} w_j x_j.$$

• Training set is distributed over devices $i = 1, \ldots, d$.

▶ Device *i* has access to labels and *i*-th feature. Thus, local dataset consists of **y** and $\mathbf{f}^{(i)} = (x_i^{(1)}, \dots, x_i^{(m)})$.

• Linear regression:
$$\min_{\mathbf{w} \in \mathbb{R}^d} \left\| \mathbf{y} - \sum_{j=1}^d \mathbf{f}^{(j)} w_j \right\|_2^2$$

VFL via GTVMin

Let us rewrite linear regression as

$$\min_{\mathbf{w}\in\mathbb{R}^d,\mathbf{s}}\|\mathbf{y}-\mathbf{s}\|_2^2 \quad ext{s.t.} \quad \mathbf{s}=\sum_{j=1}^d \mathbf{f}^{(j)}w_j.$$

Above problem is equivalent to

We can approximate this by an instance of GTVMin.

VFL via GTVMin (ctd.)

Consider linear regression problem

$$\min_{\mathbf{s}^{(1)},...,\mathbf{s}^{(d)}} \sum_{i=1}^{d} \left\| \mathbf{y} - \mathbf{s}^{(i)} \right\|_{2}^{2} \text{ s.t. } \mathbf{s}^{(i)} = \sum_{j=1}^{d} \mathbf{f}^{(j)} w_{j}, \text{ at } i = 1, \dots, d. \text{ (A)}$$

Consider s⁽ⁱ⁾ as auxiliary local model params.

For given $(w_1, \ldots, w_d)^T$, the constraint $\mathbf{s}^{(i)} = \sum_{j=1}^d \mathbf{f}^{(j)} w_j$ holds approximately by solutions of

$$\min_{\mathbf{s}^{(1)},...,\mathbf{s}^{(d)}} \sum_{i=1} \left\| \mathbf{s}^{(i)} - \mathbf{f}^{(i)} w_i \right\|_2^2 + \underbrace{\alpha}_{\to \infty} \sum_{\{i,i'\} \in \mathcal{E}} \left\| \mathbf{s}^{(i)} - \mathbf{s}^{(i')} \right\|_2^2.(B)$$

Edges & must form a connected FL network (e.g., a star).

VFL via GTVMin (ctd.)

Combining (A) with (B) yields
$$\min_{\substack{w_1,...,w_d\\\mathbf{s}^{(1)},...,\mathbf{s}^{(d)}}} \sum_{i=1}^d \|\mathbf{s}^{(i)} - \mathbf{y}\|_2^2 + \beta \|\mathbf{s}^{(i)} - \mathbf{f}^{(i)}w_i\|_2^2 + \alpha \sum_{\{i,i'\}\in\mathcal{E}} \|\mathbf{s}^{(i)} - \mathbf{s}^{(i')}\|_2^2.$$

- GTVMin with local model params. $w_i, \mathbf{s}^{(i)}, i = 1, ..., d$.
- Edges \mathcal{E} must form a connected FL network (e.g., a star).
- Need sufficiently large $\beta > 0$ to ensure solutions satisfy $\mathbf{s}^{(i)} = \sum_{j=1}^{d} \mathbf{f}^{(j)} w_j$, for each i = 1, ..., d.

Recap and Learning Goals

Single-Model (Global) FL

Horizontal FL

Vertical FL

Clustered FL

Personalized FL

A simple prob. model for FL applications is as follows.

- ► Local dataset $\mathcal{D}^{(i)}$ drawn i.i.d. from prob. dist. $p^{(i)}(\mathbf{x}, y)$.
- ▶ Nodes *i* with similar $p^{(i)}$ form a cluster $C \subseteq V$.
- CFL aims at learning cluster-wise model params.

$$\mathbf{w}^{(i)} = \overline{\mathbf{w}}^{(\mathcal{C})}$$
 for all $i \in \mathcal{C}$.

Some CFL Applications

- Healthcare. Personalizing models for hospitals or wearable devices based on patient population similarities.
- Smart Homes. Grouping devices by household behavior patterns for energy consumption prediction or automation.
- Industrial IoT. Adapting predictive maintenance models to clusters of machines with similar operational profiles.
- Retail. Tailoring recommendation engines to different store locations or customer demographics.
- Mobility. Building location-specific traffic prediction models for ride-sharing or delivery services.

CFL via GTVMin

Local model params. delivered by GTVMin tend to be clustered over well-connected subsets of nodes.³

How to ensure that clusters of GTVMin are correct ($\widehat{C} \approx C$)?

³Y. SarcheshmehPour, Y. Tian, L. Zhang and A. Jung, "Clustered Federated Learning via Generalized Total Variation Minimization," in IEEE Transactions on Signal Processing, vol. 71, pp. 4240-4256, 2023.

Designing FL Network for CFL

- Edge weights $A_{i,i'}$ are design choice for FL methods.
- More edges \Rightarrow means more computation.
- ▶ Need sufficiently many edges within a cluster C.
- ► Avoid boundary edges that leave a cluster C.

Graph Learning Methods

Data-driven (using $\mathcal{D}^{(1)}, \ldots, \mathcal{D}^{(n)}$) constructions of edges:

• Use statistical tests¹ for $p^{(i)} \stackrel{?}{=} p^{(i')}$.

• Choose $A_{i,i'}$ via (est.) KL-divergence² $D^{(KL)}(p^{(i)}, p^{(i')})$.

• Compare gradients³ $\nabla L_i(\mathbf{w}), \nabla L_{i'}(\mathbf{w}).$

Compare vector representation (embedding)⁴ z⁽ⁱ⁾, z^(i').

¹Schrab et.al., MMD Aggregated Two-Sample Test, JMLR, 2023
²Y. Bu et.al., "Estimation of KL Divergence: Optimal Minimax
Rate," in IEEE Transactions on Information Theory, 2018
³Werner et.al., Provably Personalized and Robust Federated Learning,

TMLR, 2023.

⁴Petukhova et.al, Text Clustering with LLM Embeddings, 2024.

Recap and Learning Goals

Single-Model (Global) FL

Horizontal FL

Vertical FL

Clustered FL

Personalized FL

Personalized FL

• GTVMin for ANNs $h^{(i)}$ with hidden layer.

• Local model params
$$\mathbf{w}^{(i)} = \left(\left(\mathbf{u}^{(i)} \right)^T, \left(\mathbf{v}^{(i)} \right)^T \right)^T$$

• Use GTV penalty $\phi = \left\| \mathbf{u}^{(i)} - \mathbf{u}^{(i')} \right\|_2^2$.

Recap and Learning Goals

Single-Model (Global) FL

Horizontal FL

Vertical FL

Clustered FL

Personalized FL

Wrap Up

We discussed how FL flavours are obtained by specific design choices for FL networks and GTVMin.

- ► Global-Model FL equivalent to GTVMin over star graph.
- ► HFL: Nodes access same features of datapoints.
- VFL: Nodes access different sets of features.
- CFL: Construct edges by statistical similarities between local datasets.
- PersFL: GTV penalty φ uses only parts of a model (e.g., input layers).

The next (and final) module discusses key requirements for trustworthy FL, including robustness, privacy-protection and explainability.

We can ensure these requirements by specific design choices for FL networks and GTVMin.

Further Resources

- YouTube: @alexjung111
- LinkedIn: Alexander Jung
- GitHub: alexjungaalto

