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A (“Real-World”) FL System
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Abstracting Away Details

To analyze an FL system, we (need to) ignore many details:

▶ physical properties of communication links

▶ low-level communication protocols

▶ hardware configuration of devices

▶ operating systems of devices

▶ scientific computing software (Python packages)
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An FL Network

D(i),H(i), Li (·)

D(i ′),H(i ′), Li ′ (·)
Ai ,i ′

▶ FL network consists of devices, denoted i = 1, . . . , n.

▶ Some i , i ′ connected by edge with the weight Ai ,i ′ >0.

▶ Device i generates data D(i) and trains model H(i).

▶ Data D(i) used to construct loss func. Li (·).
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FL Network is an Approximation

“real-world” FL system

FL network

modelling error
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A Precise Definition

An FL network consists of:

▶ a finite set of nodes, denoted as V := {1, . . . , n}

▶ a local model H(i) at each node i ∈ V

▶ a local loss function Li (·) at each node i ∈ V

▶ a set of undirected edges, denoted as E

▶ a positive edge weight Ai ,i ′ > 0 for each edge {i , i ′} ∈ E

We represent the nodes V , edges E , and edge weights Ai ,i ′ of
the FL network as an undirected weighted graph G.
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Nodes of an FL Network

▶ Consider an FL system with a finite number of devices n.

▶ We index devices as i = 1, . . . , n.

▶ These indices form the set of nodes V in an FL network.

▶ Each node i ∈ V represents a physical device.

▶ We use “device i” and “node i” interchangeably.
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Local Models of an FL Network
▶ Consider an FL system with devices i = 1, . . . , n.

▶ Each device trains local (personal) model H(i).

▶ The devices might use (very) different local models.

▶ We use local model parameters w(i) for parametric H(i).

H(i)

model=LinearRegression()

H(i ′)

model=DecisionTreeRegressor()

11 / 39



Local Loss Functions of an FL Network

▶ Consider device i , training its local model H(i).

▶ To train a model is to learn a useful hypothesis h(i)∈H(i).

▶ We measure usefulness of h(i) by a local loss function

Li (·) : H(i) → R : h(i) 7→ Li
(
h(i)

)
▶ Different devices might use different loss functions.
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Local Loss Functions of an FL Network - ctd.

▶ FL methods use different constructions of loss funcs.

▶ for param. models H(i), with parameters w(i)∈Rd , use

Li (·) : Rd → R : w(i) 7→ Li
(
w(i)

)
▶ can use average loss on local dataset

Li
(
w(i)

)
:=

1

mi

mi∑
r=1

(
y (i ,r) −

(
w(i)

)T
x(i ,r)

)2

▶ use reward signals to estimate loss (federated reinf.
learning)
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Edges in an FL Network

▶ FL network consists of undirected weighted edges E .

▶ {i , i ′} ∈ E signifies a similarity between devices i and i ′.

▶ We quantify similarity using edge weight Ai ,i ′ > 0.

▶ FL applications employ various notions of similarity.

▶ We will primarily treat edges as a design choice.
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Effect of Placing an Edge

We will design FL algorithms that are based on an FL network.

D(i ′),H(i ′)D(i),H(i) Ai ,i ′

Placing an edge {i , i ′} ∈ E between devices i , i ′ has two
consequences on FL algorithms:

▶ We must communicate results of computations between
devices i , i ′ (Ai ,i ′ ≈ channel capacity).

▶ The local models at i , i ′ are forced to be similar.
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Connectivity of an FL Network

Consider an FL network with graph G. We define:

▶ G is connected if there is a path between any i , i ′ ∈ V .

▶ A component C ⊆ V is a connected subgraph with no
edges between C and V \ C.

▶ The neighborhood of i ∈V is N (i) :={i ′∈V :{i , i ′}∈E}.

▶ The weighted node degree of i is d (i) :=
∑

i ′∈N (i) Ai ,i ′ .

▶ The maximum node degree is dmax :=maxi∈V d
(i).
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Connectivity of an FL Network - Example

i=12

3 4

5 6

component C(1) component C(2)

▶ FL network with graph G containing n=6 nodes.

▶ Uniform edge-weights, Ai ,i ′ = 1 for all {i , i ′}∈E .

▶ Two components C(1)={1, 2, 3}, C(2)={4, 5, 6}.

▶ d (1)=1, N (2)={1, 3}, dmax=2.

17 / 39



Design Choices

▶ Each FL network involves key design choices for

▶ Nodes. Which devices should be included?

▶ Local models and loss functions. What type of models
should devices use, and how should we evaluate them?

▶ Edges. Which devices should be connected, and how
should similarity be defined?

▶ These choices determine the computational and
statistical properties of FL algorithms.

▶ Trade-offs between comp. complexity, accuracy,
robustness, explainability, and privacy-prot.
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Design Space and Objectives

local models

edges

accuracy

compute
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Laplacian Matrix

▶ Consider FL network with a weighted, undirected graph G.

▶ The Laplacian matrix L(G) ∈ Rn×n is defined
element-wise as:

L
(G)
i ,i ′ :=


−Ai ,i ′ for i ̸= i ′, {i , i ′} ∈ E∑

i ′′ ̸=i Ai ,i ′′ for i = i ′

0 else.
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Laplacian Matrix - Example

Here is a graph G with uniform edge weights Ai ,i ′ =1.

1

2 3

L(G) =

 2 −1 −1
−1 1 0
−1 0 1
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Properties of the Laplacian Matrix

The Laplacian matrix L(G) of an FL network is

▶ symmetric L(G) =
(
L(G))T (since edges are undirected)

▶ and positive semi-definite (psd),

wTL(G)w ≥ 0 for every w ∈ Rn. (1)

The psd property (1) follows from the identity

wTL(G)w =
∑

{i ,i ′}∈E

Ai ,i ′
(
w (i)−w (i ′)

)2
︸ ︷︷ ︸

total variation

which holds for every w=
(
w (1), . . . ,w (n)

)T ∈ Rn.
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The Spectrum of the Laplacian Matrix

▶ We can decompose any Laplacian matrix L(G)∈Rn×n as

L(G) =
n∑

j=1

λju
(j)
(
u(j)

)T
,

▶ with orthonormal eigenvecs. u(1), . . . ,u(n) ∈ Rn, i.e.,

(
u(j)

)T
u(j ′) =

{
1 for j = j ′

0 otherwise,

▶ and non-neg. eigvals

0 = λ1 ≤ . . . ≤ λn ≤ 2dmax.

The spectrum of L(G) is the set of distinct eigenvalues.
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Spectral Characterization of FL Networks

FL network G with k connected components C(1), . . . , C(k).

Then, the Laplacian matrix L(G) =
∑n

j=1 λju(j)
(
u(j)

)T
▶ has eigvals. λc = 0 for c = 1, . . . , k , with

▶ corresponding eigvecs. u(c), given entry-wise as

u
(c)
i =


1√∣∣C(c)

∣∣ for i ∈ C(c)

0 otherwise.

G is connected (k=1) if and only if λ2 > 0.
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Spectral Clustering - Toy Example

Consider a FL network G with two components:

i=12

3 4

5 6

component C(1) component C(2)

▶ The Laplacian matrix has two zero eigvals. λ1=λ2=0.

▶ What are corresp. eigvecs. u(1),u(2)? Are they unique?
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Weather Stations across Finland

Each weather station i collects data (observations) D(i) that
can be used to train a local model H(i)

Python script for reproducing the Fig.:
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https://github.com/FederatedLearningAalto/FederatedLearningAalto.github.io/blob/master/assets/DemoIntroLecture/Lec_FLNetworksUtils.py


Local Dataset of a FMI Station

Each FMI station i generates a local dataset D(i) of the form

Time Air Temperature
2025-01-13 16:08:00 -1.5
2025-01-13 16:09:00 -1.5
2025-01-13 16:10:00 -1.4
2025-01-13 16:11:00 -1.5
2025-01-13 16:12:00 -1.5
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FL Network for FMI

Which nodes (FMI stations) should be connected by edges ?
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The Effect of Adding an Edge

D(i ′),H(i ′)D(i),H(i)

Ai ,i ′

▶ Communication requirement. Adding an edge means
model parameters (updates) must be exchanged between
i and i ′, requiring a communication link.

▶ Coupling effect. The local model parameters w(i) and
w(i ′) become coupled, with interaction strength
determined by Ai ,i ′ .
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Connectivity measured by λ2

λ2(G)λ2=0 λ2=n

1
disconnected

23

1

23

1

fully connected

23

▶ FL algorithms are faster for G with large λ2(G).

▶ Place (given number of) edges to maximize λ2(G).
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Computational Aspects

▶ FL algorithms operate by iterative message passing.

▶ Each edge adds compute/comm. per-iteration.

▶ More edges speed up alg. ⇒ needs fewer iterations.

nr. of iterations

per-iteration compl.

nr. of edges
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Statistical Aspects

Consider an FL network with nodes i = 1, . . . , n that generate
local data D(i) and train local model H(i).

Having an edge {i , i ′}∈E
▶ enforces similarity between local models at i , i ′, which

▶ can be detrimental if i , i ′ have different data distributions.

Place edges only between statistically similar nodes i , i ′!

How to measure the stat. similarity between nodes i , i ′?
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Measuring Statistical Similarity

▶ Consider the local (weather) dataset D(i)

Time Air Temperature
2025-01-13 16:08:00 -1.5
2025-01-13 16:09:00 -1.5
2025-01-13 16:12:00 -1.5

▶ Let’s interpret the data as (the realization of) a random
process with parametrized prob. distr. p(D(i);θ).

▶ We estimate θ by a function θ̂(i) of D(i).

▶ Measure similarity between i , i ′ by
∥∥∥θ̂(i) − θ̂(i ′)

∥∥∥.
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Measuring Statistical Similarity (ctd.)

▶ Est. θ̂(i) is one example of vector repr. z(i)∈Rk of D(i).

▶ Place edges between nearest neighb. using
∥∥z(i) − z(i

′)
∥∥.

▶ We can also use other constructions for z(i), e.g.,

▶ for FMI stations, can use z(i) :=
(
latitude, longitude

)T
,

▶ use gradient z(i) :=∇Li (w) of local loss func.,

▶ construct z(i) by auto-encoder (learnt embedding).
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Example: FMI Weather Stations
Connect FMI station i to nearest neighb. using vector

z(i) :=
(
latitude, longitude

)T
.

Python script for reproducing the Fig.:
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https://github.com/FederatedLearningAalto/FederatedLearningAalto.github.io/blob/master/assets/DemoIntroLecture/Lec_FLNetworksUtils.py


Example: FMI Weather Stations (ctd.)
Connect each FMI station to nearest neighbours using
z(i) := avg. temp at station i during 2024-05-15.

Python script for reproducing the Fig.:

38 / 39

https://github.com/FederatedLearningAalto/FederatedLearningAalto.github.io/blob/master/assets/DemoIntroLecture/Lec_FLNetworksUtils.py


What’s Next?

The next module formulates FL as an

optimization problem defined over an FL

network.

Later modules use FL networks for the design

and analysis of FL systems.
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