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A (“Real-World") FL System
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Abstracting Away Details

To analyze an FL system, we (need to) ignore many details:

» physical properties of communication links
» |ow-level communication protocols

» hardware configuration of devices

» operating systems of devices

» scientific computing software (Python packages)
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An FL Network

DO HO, Ly ()

» FL network consists of devices, denoted i = 1,...,n.
» Some i, i’ connected by edge with the weight A; ;> 0.
» Device i generates data D) and trains model ().

» Data D) used to construct loss func. L; ().
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FL Network is an Approximation

“real-world” FL system modelling error

FL network
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A Precise Definition

An FL network consists of:

> a finite set of nodes, denoted as V := {1,..., n}

> a local model H() at each node i € V

» a local loss function L; (-) at each node i € V
» a set of undirected edges, denoted as £
>

a positive edge weight A; > 0 for each edge {i,i/'} € £

We represent the nodes V, edges £, and edge weights A; i/ of
the FL network as an undirected weighted graph G.
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Nodes of an FL Network

» Consider an FL system with a finite number of devices n.
» We index devicesas i =1,...,n.

» These indices form the set of nodes V in an FL network.
» Each node i € V represents a physical device.

» We use “device /" and “node /" interchangeably.
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Local Models of an FL Network

» Consider an FL system with devices i =1,...,n.
» Each device trains local (personal) model ().
» The devices might use (very) different local models.

» We use local model parameters w'’) for parametric #(.

H () H (")
— I
[ mode1=LinearRegression()] [ model=DecisionTreeRegressor () ]
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Local Loss Functions of an FL Network

» Consider device i/, training its local model HO,
» To train a model is to learn a useful hypothesis h() € H ().

> We measure usefulness of h(") by a local loss function

Li(-): HD = R A — L (hD)

» Different devices might use different loss functions.
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Local Loss Functions of an FL Network - ctd.

» FL methods use different constructions of loss funcs.
» for param. models HO | with parameters wl) eRY, use
L,' () : Rd — R: W(I) —> L,‘ (W(’))

» can use average loss on local dataset

mj

2
L (w) = L 3 <y(,-,,) _ (W(i))Tx(i,r))

mj
r=1

» use reward signals to estimate loss (federated reinf.
learning)
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Edges in an FL Network

» FL network consists of undirected weighted edges £.
> {i,i'} € & signifies a similarity between devices i and /.
» We quantify similarity using edge weight A; ; > 0.

» FL applications employ various notions of similarity.

» We will primarily treat edges as a design choice.
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Effect of Placing an Edge

We will design FL algorithms that are based on an FL network.

O
D), 2 A D) 3

Placing an edge {/, i’} € £ between devices i, i’ has two
consequences on FL algorithms:

» We must communicate results of computations between
devices i, i" (A; » =~ channel capacity).

» The local models at i, /" are forced to be similar.
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Connectivity of an FL Network

Consider an FL network with graph G. We define:

» G is connected if there is a path between any i,/ € V.

» A component C C V is a connected subgraph with no
edges between C and V' \ C.

» The neighborhood of i€V is NO):={i"cV:{i,i'}€&}.
» The weighted node degree of i is d() =D ient A

» The maximum node degree is dy,, :=max;cy d().
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Connectivity of an FL Network - Example

component C() component C®
SN
2 i=1 5 6

» FL network with graph G containing n=6 nodes.
» Uniform edge-weights, A;» = 1 for all {i,/'} €.
» Two components CV)={1,2,3},C(® ={4,5,6}.

> d(l)::[, N(2):{1,3}. dmax:2'
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Design Choices

» Each FL network involves key design choices for

» Nodes. Which devices should be included?

» Local models and loss functions. What type of models
should devices use, and how should we evaluate them?

» Edges. Which devices should be connected, and how
should similarity be defined?

» These choices determine the computational and
statistical properties of FL algorithms.

» Trade-offs between comp. complexity, accuracy,
robustness, explainability, and privacy-prot.
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Design Space and Objectives
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Laplacian Matrix

» Consider FL network with a weighted, undirected graph G.

» The Laplacian matrix L(9) € R"™*" is defined
element-wise as:

_Ai,i’ for i # i/, {I, Il} €&
Ll(7gll) = Zi”;ﬁf A,",‘// fOI’ I - i/
0 else.
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Laplacian Matrix - Example

Here is a graph G with uniform edge weights A; » =1.

2 -1 -1
L9 =|(-1 1 0
2 3 -1 0 1
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Properties of the Laplacian Matrix
The Laplacian matrix L(9) of an FL network is
» symmetric L(9) = (L(g))T (since edges are undirected)
» and positive semi-definite (psd),
w L@w > 0 for every w € R". (1)

The psd property (1) follows from the identity

WLOw = 3 A (w0 —wl)?

{i,i"}e&

total variation

which holds for every w= (W(l), cee W(”)) T eRrn.
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The Spectrum of the Laplacian Matrix

» We can decompose any Laplacian matrix L(9) € R"™*" as
L9 — Z )\qu)(u(j))T7
j=1

» with orthonormal eigenvecs. u(l), e ul” e R je.,

(u(j))Tu(j/) _ 1 fOI’j :-j/
0 otherwise,

» and non-neg. eigvals
0=X\ < ... <\, < 2dpax.

The spectrum of L(9) is the set of distinct eigenvalues.
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Spectral Characterization of FL Networks

FL network G with k connected components C(V, ... C(.

Then, the Laplacian matrix L@ = er":1 )\ju(f) (uU))T
» has eigvals. \c =0 for c =1,..., k, with

» corresponding eigvecs. u(®), given entry-wise as

L for i € (9

0 otherwise.

G is connected (k=1) if and only if A, > 0.
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Spectral Clustering - Toy Example

Consider a FL network G with two components:

component C() component C®)
L A
2 i=1 5 6

» The Laplacian matrix has two zero eigvals. \; =\, =0.

» What are corresp. eigvecs. u® u®? Are they unique?
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Weather Stations across Finland
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Each weather station i collects data (observations) D() that
can be used to train a local model #H()

Python script for reproducing the Fig.: :
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https://github.com/FederatedLearningAalto/FederatedLearningAalto.github.io/blob/master/assets/DemoIntroLecture/Lec_FLNetworksUtils.py

Local Dataset of a FMI Station

Each FMI station i generates a local dataset D) of the form

Time Air Temperature
2025-01-13 16:08:00 -1.5
2025-01-13 16:09:00 -1.5
2025-01-13 16:10:00 -1.4
2025-01-13 16:11:00 -1.5

2025-01-13 16:12:00 -1.5
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FL Network for FMI
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Which nodes (FMI stations) should be connected by edges ?

30/39



The Effect of Adding an Edge

Ai i’

)

[ o
D, 340 D) 4

» Communication requirement. Adding an edge means
model parameters (updates) must be exchanged between
i and i/, requiring a communication link.

» Coupling effect. The local model parameters w(?) and
w(") become coupled, with interaction strength
determined by A; /.
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Connectivity measured by A,

disconnected fully connected
1 1 1
3 2 3 2 3 2
I : ;
>\2 - O >\2 =N )\2(9)

» FL algorithms are faster for G with large A\»(G).

» Place (given number of) edges to maximize \»(G).
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Computational Aspects

» FL algorithms operate by iterative message passing.
» Each edge adds compute/comm. per-iteration.

» More edges speed up alg. = needs fewer iterations.

nr. of iterations

per-iteration compl.

nr. of edges
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Statistical Aspects

Consider an FL network with nodes i = 1, ..., n that generate
local data D) and train local model ().

Having an edge {i,/'} €&

» enforces similarity between local models at 7, i’, which

» can be detrimental if /, /' have different data distributions.
Place edges only between statistically similar nodes i, i’!

How to measure the stat. similarity between nodes i, i’?
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Measuring Statistical Similarity

» Consider the local (weather) dataset D(!)

Time Air Temperature
2025-01-13 16:08:00 -1.5
2025-01-13 16:09:00 -1.5
2025-01-13 16:12:00 -1.5

> Let's interpret the data as (the realization of) a random
process with parametrized prob. distr. p(D(); 9).

> We estimate 6 by a function %) of DO).

/ ‘

» Measure similarity between i, i’ by Hém — o
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Measuring Statistical Similarity (ctd.)

> Est. 81 is one example of vector repr. z()) € R¥ of D),
> Place edges between nearest neighb. using ||z() — z(")|.

» We can also use other constructions for z(), e.g.,

> for FMI stations, can use z()) := (latitude, Iongitude)T,
> use gradient z():=VL; (w) of local loss func.,

> construct z() by auto-encoder (learnt embedding).
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Example: FMI Weather Stations

Connect FMI station /i to nearest neighb. using vector
(i) . (l . . T
z\" = (latitude, Iongltude) .

latitude

T T T T T T T
20 22 24 26 28 30 32
longitude

Python script for reproducing the Fig.: 5
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https://github.com/FederatedLearningAalto/FederatedLearningAalto.github.io/blob/master/assets/DemoIntroLecture/Lec_FLNetworksUtils.py

Example: FMI Weather Stations (ctd.)

Connect each FMI station to nearest neighbours using
z() .= avg. temp at station i during 2024-05-15.
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Python script for reproducing the Fig.: ?4_;
BIFAE,
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https://github.com/FederatedLearningAalto/FederatedLearningAalto.github.io/blob/master/assets/DemoIntroLecture/Lec_FLNetworksUtils.py

What's Next?

The next module formulates FL as an
optimization problem defined over an FL
network.

Later modules use FL networks for the design
and analysis of FL systems.
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